Numerical Study of High Spectral Efficiency and High-Temperature Energy Harvesting Metamaterial Emitter to Improve Thermophotovoltaic Performance

Design work was done on a broadband and wide-angle selective pyramid metamaterial emitter. COMSOL Multiphysics software was used to study the emitter, which was made of tungsten and aluminum nitride. The width of the unit cell and the tungsten ground thickness were fixed while other geometric parame...

Full description

Saved in:
Bibliographic Details
Main Authors: Sifan Tamiru, Fekadu Tolessa, Birke Alemu, Solomon Tiruneh, Abebe Belay, Gurmu Alemu, T. Gurumurthi
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2023/5442031
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Design work was done on a broadband and wide-angle selective pyramid metamaterial emitter. COMSOL Multiphysics software was used to study the emitter, which was made of tungsten and aluminum nitride. The width of the unit cell and the tungsten ground thickness were fixed while other geometric parameters, such as the base length of the pyramid, the height of the pyramid, and the thickness of the dielectric, were tuned to produce the emitter’s desired broadband emission. A high average emissivity over 0.96 below the cutoff wavelength (0.1 μm-2.2 μm) was seen in the numerical simulation. The developed metamaterial emitter also had good emissivity across a broad range of incidence angles, from 0° to 60°, and was polarization independent. In addition, the planned emitter for the InGaAs cell has a better spectral efficiency than the blackbody other designed emitter. In general, the planned selective nanopyramid emitter was realized with 75% spectrum efficiency for InGaAs band gap energy (0.55 eV) at 1200 K, which was greater than blackbody and prior papers.
ISSN:1687-529X