Estrogenic activity of E2-conjugated GLP-1 is mediated by intracellular endolysosomal acidification and estrone metabolism
Objective: Recent modifications to glucagon-like peptide 1 (GLP-1), known for its insulinotropic and satiety-inducing effects, have focused on conjugating small molecules to enable selective delivery into GLP-1R+ tissues to achieve targeted synergy and improved metabolic outcomes. Despite continued...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Molecular Metabolism |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2212877825000432 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Objective: Recent modifications to glucagon-like peptide 1 (GLP-1), known for its insulinotropic and satiety-inducing effects, have focused on conjugating small molecules to enable selective delivery into GLP-1R+ tissues to achieve targeted synergy and improved metabolic outcomes. Despite continued advancements in GLP-1/small molecule conjugate strategies, the intracellular mechanisms facilitating concurrent GLP-1R signaling and small molecule cargo release remain poorly understood. Methods: We evaluate an estradiol (E2)-conjugated GLP-1 (GLP-1-CEX/E2) for relative differences in GLP-1R signaling and trafficking, and elucidate endolysosomal dynamics that lead to estrogenic activity using various live-cell, reporter, imaging, and mass-spectrometry techniques. Results: We find GLP-1-CEX/E2 does not differentially activate or traffic the GLP-1R relative to its unconjugated GLP-1 backbone (GLP-1-CEX), but uniquely internalizes the E2 moiety and stimulates estrogenic signaling. Endolysosomal pH-dependent proteolytic activity likely mediates E2 moiety liberation, as evidenced by clear amplification in estrogenic activity following co-administration with lysosomal VATPase activator EN6. The hypothesized liberated metabolite from GLP-1-CEX/E2, E2-3-ether, exhibits partial estrogenic efficacy through ERα, and is predisposed toward estrone-3-sulfate conversion. Finally, we identify relative increases in intracellular E2, estrone, and estrone-3-sulfate following GLP-1-CEX/E2 incubation in GLP-1R+ cells, demonstrating proof-of-principle for desired cargo release. Conclusion: Together, our data suggest that GLP-1-CEX/E2 depends on GLP-1R trafficking and lysosome acidification for estrogenic efficacy, with a likely conversion of the liberated E2-3-ether metabolite into estrone-3-sulfate, resulting in a residual downstream flux into active estradiol. Our current findings aim to improve the understanding of small molecule targeting and the efficacy behind GLP-1/small molecule conjugates. |
|---|---|
| ISSN: | 2212-8778 |