Optimal Stable Approximation for the Cauchy Problem for Laplace Equation
Cauchy problem for Laplace equation in a strip is considered. The optimal error bounds between the exact solution and its regularized approximation are given, which depend on the noise level either in a Hölder continuous way or in a logarithmic continuous way. We also provide two special regularizat...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2016/1468634 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cauchy problem for Laplace equation in a strip is considered. The optimal error bounds between the exact solution and its regularized approximation are given, which depend on the noise level either in a Hölder continuous way or in a logarithmic continuous way. We also provide two special regularization methods, that is, the generalized Tikhonov regularization and the generalized singular value decomposition, which realize the optimal error bounds. |
---|---|
ISSN: | 1687-9120 1687-9139 |