Exploring the feasibility of GF1-WFV data in estimating SPAD using spatiotemporal fusion algorithms

Remote sensing technology provides an effective means for continuously assessing the chlorophyll content in plants on a broad scale. Given the challenges associated with satellite image quality and spatiotemporal resolution, spatiotemporal fusion algorithms for estimating vegetation chlorophyll cont...

Full description

Saved in:
Bibliographic Details
Main Authors: Annan Zeng, Jianli Ding, Jinjie Wang, Lijing Han, Haiyan Han, Shuang Zhao, Xiangyu Ge
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Ecological Informatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1574954125000445
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remote sensing technology provides an effective means for continuously assessing the chlorophyll content in plants on a broad scale. Given the challenges associated with satellite image quality and spatiotemporal resolution, spatiotemporal fusion algorithms for estimating vegetation chlorophyll content have garnered significant attention in recent years. In this study, we evaluated the performance of four fusion algorithms fusing Gaofen-1 WFV and MODIS data while also exploring their fusion accuracy. A random forest regression model was developed using the fused images and measured SPAD (Soil and Plant Analyzer Development) values, enabling large-scale, accurate, and dynamic monitoring of vegetation chlorophyll content. The results indicate that (1) all four fusion algorithms can effectively address the issue of missing images; (2) the constructed random forest regression model accurately estimates SPAD values; and (3) among the three vegetation indices that exhibit a strong correlation with SPAD values, the fusion strategy “Index-then-Blend” outperforms “Blend-then-Index.” This study provides comprehensive insights into dynamic and large-scale monitoring of vegetation chlorophyll content, particularly in scenarios in which satellite imagery is unavailable.
ISSN:1574-9541