Almost Periodic Solutions of a Discrete Mutualism Model with Variable Delays

We discuss a discrete mutualism model with variable delays of the formsN1(n+1)=N1(n)exp{r1(n)[(K1(n)+α1(n)N2(n-μ2(n)))/1+N2(n-μ2(n)))-N1(n-ν1(n))]}, N2(n+1)=N2(n)exp{r2(n)[(K2(n)+α2(n)N1(n-μ1(n)))/(1+N1(n-μ1(n)))-N2(n-ν2(n))]}. By means of an almost periodic functional hull theory, sufficient condit...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongzhi Liao, Tianwei Zhang
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/742102
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We discuss a discrete mutualism model with variable delays of the formsN1(n+1)=N1(n)exp{r1(n)[(K1(n)+α1(n)N2(n-μ2(n)))/1+N2(n-μ2(n)))-N1(n-ν1(n))]}, N2(n+1)=N2(n)exp{r2(n)[(K2(n)+α2(n)N1(n-μ1(n)))/(1+N1(n-μ1(n)))-N2(n-ν2(n))]}. By means of an almost periodic functional hull theory, sufficient conditions are established for the existence and uniqueness of globally attractive almost periodic solution to the previous system. Our results complement and extend some scientific work in recent years. Finally, some examples and numerical simulations are given to illustrate the effectiveness of our main results.
ISSN:1026-0226
1607-887X