Integrating Optical Draw-In Measurements with Finite Element Analysis for Enhanced Process Insights in Sheet Metal Forming

Accurate monitoring of draw-in behaviour during sheet metal forming is crucial for understanding material flow, optimizing process parameters, and validating finite element (FE) simulations. This study presents an integrated approach combining high-resolution optical measurement, laser displacement...

Full description

Saved in:
Bibliographic Details
Main Authors: Chezan Toni, Dhawale Trunal, Pilthammar Johan, Barlo Alexander, Aeddula Omsri
Format: Article
Language:English
Published: EDP Sciences 2025-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2025/02/matecconf_iddrg2025_01065.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate monitoring of draw-in behaviour during sheet metal forming is crucial for understanding material flow, optimizing process parameters, and validating finite element (FE) simulations. This study presents an integrated approach combining high-resolution optical measurement, laser displacement sensors, and numerical simulations to analyse draw-in variations during the first forming operation of an automotive front door inner panel. A dedicated optical system was employed to capture sequential images of the blank edge, which were calibrated and processed using computer vision techniques to extract precise draw-in values at predefined locations. The results demonstrate that optical monitoring provides reliable insights related to the sheet metal forming process, highlighting the influence of real-world process disturbances. Furthermore, the study explores the feasibility of integrating measured draw-in data into an adaptive control framework, applying artificial intelligence techniques to refine process stability. By utilizing experimental data alongside numerical predictions, this methodology enhances process understanding and enables data-driven decision-making in industrial sheet metal forming. The findings contribute to the development of intelligent forming control strategies, bridging the gap between modelling and real-world manufacturing conditions to improve product quality and production efficiency.
ISSN:2261-236X