Self-organising of Atoms in Germanium and Silicon Melts
Propensity of germanium and silicon atoms to self-organizing in melts with formation microclasters in the form of chains with covalent internuclear communications is proved. It is developed distributions model in the sizes of microclasters. By means of model are estimated as much as possible probabl...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Sumy State University
2015-12-01
|
| Series: | Журнал нано- та електронної фізики |
| Subjects: | |
| Online Access: | http://jnep.sumdu.edu.ua/download/numbers/2015/4/articles/jnep_2015_V7_04064.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849744884792033280 |
|---|---|
| author | E.J. Shvetz I.F. Chervony O.K. Golovko |
| author_facet | E.J. Shvetz I.F. Chervony O.K. Golovko |
| author_sort | E.J. Shvetz |
| collection | DOAJ |
| description | Propensity of germanium and silicon atoms to self-organizing in melts with formation microclasters in the form of chains with covalent internuclear communications is proved. It is developed distributions model in the sizes of microclasters. By means of model are estimated as much as possible probable and average quantity of atoms in microclaster depending on temperature. At melting temperature in germanium melt average quantity of atoms in chain Aver = 2,60, and their as much as possible probable quantity – ≈ 1. Accordingly, in silicon melt – Aver = 2,77, and as much as possible probable quantity of atoms – ≈ 2. At boiling temperature in both melts the maximum density of probabilities answers individual atoms. Results of estimations well coordinated with experimental data from the literature. Work pursues the aim of deepening of representations about processes of self-organising and structural reorganisation in melts elementary semiconductors which influence on crystallization mechanism. |
| format | Article |
| id | doaj-art-f4cf9c1a4f624ca587ceb4a0908e4ba7 |
| institution | DOAJ |
| issn | 2077-6772 |
| language | English |
| publishDate | 2015-12-01 |
| publisher | Sumy State University |
| record_format | Article |
| series | Журнал нано- та електронної фізики |
| spelling | doaj-art-f4cf9c1a4f624ca587ceb4a0908e4ba72025-08-20T03:06:24ZengSumy State UniversityЖурнал нано- та електронної фізики2077-67722015-12-017404064-104064-5Self-organising of Atoms in Germanium and Silicon MeltsE.J. Shvetz0I.F. Chervony1O.K. Golovko2Zarorizhzhya State Engineering Academy, 226, Lenina Ave., 69006 Zaporizhzhya, UkraineZarorizhzhya State Engineering Academy, 226, Lenina Ave., 69006 Zaporizhzhya, UkraineZarorizhzhya State Engineering Academy, 226, Lenina Ave., 69006 Zaporizhzhya, UkrainePropensity of germanium and silicon atoms to self-organizing in melts with formation microclasters in the form of chains with covalent internuclear communications is proved. It is developed distributions model in the sizes of microclasters. By means of model are estimated as much as possible probable and average quantity of atoms in microclaster depending on temperature. At melting temperature in germanium melt average quantity of atoms in chain Aver = 2,60, and their as much as possible probable quantity – ≈ 1. Accordingly, in silicon melt – Aver = 2,77, and as much as possible probable quantity of atoms – ≈ 2. At boiling temperature in both melts the maximum density of probabilities answers individual atoms. Results of estimations well coordinated with experimental data from the literature. Work pursues the aim of deepening of representations about processes of self-organising and structural reorganisation in melts elementary semiconductors which influence on crystallization mechanism.http://jnep.sumdu.edu.ua/download/numbers/2015/4/articles/jnep_2015_V7_04064.pdfMicro-and nanoelectronicsGermaniumSiliconMeltMicroclasterNuclear chainDensity of probabilitie |
| spellingShingle | E.J. Shvetz I.F. Chervony O.K. Golovko Self-organising of Atoms in Germanium and Silicon Melts Журнал нано- та електронної фізики Micro-and nanoelectronics Germanium Silicon Melt Microclaster Nuclear chain Density of probabilitie |
| title | Self-organising of Atoms in Germanium and Silicon Melts |
| title_full | Self-organising of Atoms in Germanium and Silicon Melts |
| title_fullStr | Self-organising of Atoms in Germanium and Silicon Melts |
| title_full_unstemmed | Self-organising of Atoms in Germanium and Silicon Melts |
| title_short | Self-organising of Atoms in Germanium and Silicon Melts |
| title_sort | self organising of atoms in germanium and silicon melts |
| topic | Micro-and nanoelectronics Germanium Silicon Melt Microclaster Nuclear chain Density of probabilitie |
| url | http://jnep.sumdu.edu.ua/download/numbers/2015/4/articles/jnep_2015_V7_04064.pdf |
| work_keys_str_mv | AT ejshvetz selforganisingofatomsingermaniumandsiliconmelts AT ifchervony selforganisingofatomsingermaniumandsiliconmelts AT okgolovko selforganisingofatomsingermaniumandsiliconmelts |