Enhanced Credit Card Fraud Detection Using Deep Hybrid CLST Model

The existing financial payment system has inherent credit card fraud problems that must be solved with strong and effective solutions. In this research, a combined deep learning model that incorporates a convolutional neural network (CNN), long-short-term memory (LSTM), and fully connected output la...

Full description

Saved in:
Bibliographic Details
Main Authors: Madiha Jabeen, Shabana Ramzan, Ali Raza, Norma Latif Fitriyani, Muhammad Syafrudin, Seung Won Lee
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/1950
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The existing financial payment system has inherent credit card fraud problems that must be solved with strong and effective solutions. In this research, a combined deep learning model that incorporates a convolutional neural network (CNN), long-short-term memory (LSTM), and fully connected output layer is proposed to enhance the accuracy of fraud detection, particularly in addressing the class imbalance problem. A CNN is used for spatial features, LSTM for sequential information, and a fully connected output layer for final decision-making. Furthermore, SMOTE is used to balance the data and hyperparameter tuning is utilized to achieve the best model performance. In the case of hyperparameter tuning, the detection rate is greatly enhanced. High accuracy metrics are obtained by the proposed CNN-LSTM (CLST) model, with a recall of 83%, precision of 70%, F1-score of 76% for fraudulent transactions, and ROC-AUC of 0.9733. The proposed model’s performance is enhanced by hyperparameter optimization to a recall of 99%, precision of 83%, F1-score of 91% for fraudulent cases, and ROC-AUC of 0.9995, representing almost perfect fraud detection along with a low false negative rate. These results demonstrate that optimization of hyperparameters and layers is an effective way to enhance the performance of hybrid deep learning models for financial fraud detection. While prior studies have investigated hybrid structures, this study is distinguished by its introduction of an optimized of CNN and LSTM integration within a unified layer architecture.
ISSN:2227-7390