Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest

G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to d...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhijun Liao, Ying Ju, Quan Zou
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Scientifica
Online Access:http://dx.doi.org/10.1155/2016/8309253
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs.
ISSN:2090-908X