Dimensions of Prym varieties

Given a tame Galois branched cover of curves π:X→Y with any finite Galois group G whose representations are rational, we compute the dimension of the (generalized) Prym variety Prymρ(X) corresponding to any irreducible representation ρ of G. This formula can be applied to the study of algebraic inte...

Full description

Saved in:
Bibliographic Details
Main Author: Amy E. Ksir
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120101153X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a tame Galois branched cover of curves π:X→Y with any finite Galois group G whose representations are rational, we compute the dimension of the (generalized) Prym variety Prymρ(X) corresponding to any irreducible representation ρ of G. This formula can be applied to the study of algebraic integrable systems using Lax pairs, in particular systems associated with Seiberg-Witten theory. However, the formula is much more general and its computation and proof are entirely algebraic.
ISSN:0161-1712
1687-0425