Identification of digestion-resistant peptides in various processed peanut reveals their distinct allergenicity
Peanut protein is a significant food allergen that can trigger severe reactions. The allergenicity of peanut protein may be affected by the thermal processing method and matrices, and its anti-digestibility may also change accordingly. This study investigated how three heat treatment techniques affe...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Food Chemistry: X |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2590157524007648 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Peanut protein is a significant food allergen that can trigger severe reactions. The allergenicity of peanut protein may be affected by the thermal processing method and matrices, and its anti-digestibility may also change accordingly. This study investigated how three heat treatment techniques affect the allergenicity and digestibility of peanut proteins and compared the differences in anti-digestive peptide segments by Mass spectrometry. Results showed that boiling and frying reduced sensitization, while roasting potentially increased it. After gastric digestion, allergenicity of Ara h 1 decreases due to breakdown of allergenic peptide segments. Hydrophobic regions of Ara h 1 where monomers interact resist degradation. Compared to boiling and frying, roasting can retain more allergenic peptides containing PGQFEDFF, YLQGFSRN, QEERGQRR, HRIFLAGDKD, and KDLAFPGSGE allergenic epitopes even after prolonged digestion. Meanwhile, digestion-resistant epitopes were affected by matrix and thermal treatments. These findings underscore the potential implications for food processing and allergy management strategies. |
|---|---|
| ISSN: | 2590-1575 |