Out-of-Plane Free Vibration and Forced Harmonic Response of a Curved Beam
Based on the governing differential equation of out-of-plane curved beam, the wave propagation behavior, free vibration, and transmission properties are presented theoretically in this paper. Firstly, harmonic wave solutions are given to investigate the dispersion relation between frequency and wave...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2020/8891585 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Based on the governing differential equation of out-of-plane curved beam, the wave propagation behavior, free vibration, and transmission properties are presented theoretically in this paper. Firstly, harmonic wave solutions are given to investigate the dispersion relation between frequency and wave number, cut-off frequency, displacement, amplitude ratio, and phase diagram. The frequency spectrum results are obtained to verify the work by Kang and Lee. Furthermore, natural frequencies of the single and composite curved beam are calculated through solving the characteristic equation in the case of free-free, clamped-clamped, and free-clamped boundaries. Finally, the transfer matrices of the out-of-plane curved beam are derived by combining the continuity between the different interfaces. The transmissibility curves of the single and composite curved beam are compared to find the vibration attention band. This work will be valuable to extend the study of the out-of-plane vibration of curved beams. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |