Implicit Multifunction Theorems in Banach Spaces

This paper is mainly devoted to the study of implicit multifunction theorems in terms of Clarke coderivative in general Banach spaces. We present new sufficient conditions for the local metric regularity, metric regularity, Lipschitz-like property, nonemptiness, and lower semicontinuity of implicit...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming-ge Yang, Yi-fan Xu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/892641
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554536840986624
author Ming-ge Yang
Yi-fan Xu
author_facet Ming-ge Yang
Yi-fan Xu
author_sort Ming-ge Yang
collection DOAJ
description This paper is mainly devoted to the study of implicit multifunction theorems in terms of Clarke coderivative in general Banach spaces. We present new sufficient conditions for the local metric regularity, metric regularity, Lipschitz-like property, nonemptiness, and lower semicontinuity of implicit multifunctions in general Banach spaces. The basic tools of our analysis involve the Ekeland variational principle, the Clarke subdifferential, and the Clarke coderivative.
format Article
id doaj-art-f32346eb1b084f55bf676ca9e1943ce8
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-f32346eb1b084f55bf676ca9e1943ce82025-02-03T05:51:25ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/892641892641Implicit Multifunction Theorems in Banach SpacesMing-ge Yang0Yi-fan Xu1School of Management, Fudan University, Shanghai 200433, ChinaSchool of Management, Fudan University, Shanghai 200433, ChinaThis paper is mainly devoted to the study of implicit multifunction theorems in terms of Clarke coderivative in general Banach spaces. We present new sufficient conditions for the local metric regularity, metric regularity, Lipschitz-like property, nonemptiness, and lower semicontinuity of implicit multifunctions in general Banach spaces. The basic tools of our analysis involve the Ekeland variational principle, the Clarke subdifferential, and the Clarke coderivative.http://dx.doi.org/10.1155/2014/892641
spellingShingle Ming-ge Yang
Yi-fan Xu
Implicit Multifunction Theorems in Banach Spaces
Journal of Applied Mathematics
title Implicit Multifunction Theorems in Banach Spaces
title_full Implicit Multifunction Theorems in Banach Spaces
title_fullStr Implicit Multifunction Theorems in Banach Spaces
title_full_unstemmed Implicit Multifunction Theorems in Banach Spaces
title_short Implicit Multifunction Theorems in Banach Spaces
title_sort implicit multifunction theorems in banach spaces
url http://dx.doi.org/10.1155/2014/892641
work_keys_str_mv AT minggeyang implicitmultifunctiontheoremsinbanachspaces
AT yifanxu implicitmultifunctiontheoremsinbanachspaces