A Short Note on a Mus-Cheeger-Gromoll Type Metric

In this paper, we first show that the complete lift $U^{c}$ to $TM$ of a vector field $U$ on $M$ is an infinitesimal fiber-preserving conformal transformation if and only if $U$ is an infinitesimal homothetic transformation of $(M,g)$. Here, $(M, g)$ is a Riemannian manifold and $TM$ is its tangent...

Full description

Saved in:
Bibliographic Details
Main Author: Murat Altunbaş
Format: Article
Language:English
Published: Naim Çağman 2023-03-01
Series:Journal of New Theory
Subjects:
Online Access:https://dergipark.org.tr/en/download/article-file/2616089
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850079860324564992
author Murat Altunbaş
author_facet Murat Altunbaş
author_sort Murat Altunbaş
collection DOAJ
description In this paper, we first show that the complete lift $U^{c}$ to $TM$ of a vector field $U$ on $M$ is an infinitesimal fiber-preserving conformal transformation if and only if $U$ is an infinitesimal homothetic transformation of $(M,g)$. Here, $(M, g)$ is a Riemannian manifold and $TM$ is its tangent bundle with a Mus-Cheeger-Gromoll type metric $\tilde{g}$. Secondly, we search for some conditions under which $\left(\overset{h}{\nabla},\tilde{g}\right)$ is a Codazzi pair on $TM$ when $(\nabla, g)$ is a Codazzi pair on $M$ where $\overset{h}{\nabla}$ is the horizontal lift of a linear connection $\nabla$ on $M$. We finally discuss the need for further research.
format Article
id doaj-art-f2dd28b96bbf4b58996dbff5a8ea6479
institution DOAJ
issn 2149-1402
language English
publishDate 2023-03-01
publisher Naim Çağman
record_format Article
series Journal of New Theory
spelling doaj-art-f2dd28b96bbf4b58996dbff5a8ea64792025-08-20T02:45:06ZengNaim ÇağmanJournal of New Theory2149-14022023-03-01421710.53570/jnt.11670102425A Short Note on a Mus-Cheeger-Gromoll Type MetricMurat Altunbaş0https://orcid.org/0000-0002-0371-9913ERZINCAN UNIVERSITYIn this paper, we first show that the complete lift $U^{c}$ to $TM$ of a vector field $U$ on $M$ is an infinitesimal fiber-preserving conformal transformation if and only if $U$ is an infinitesimal homothetic transformation of $(M,g)$. Here, $(M, g)$ is a Riemannian manifold and $TM$ is its tangent bundle with a Mus-Cheeger-Gromoll type metric $\tilde{g}$. Secondly, we search for some conditions under which $\left(\overset{h}{\nabla},\tilde{g}\right)$ is a Codazzi pair on $TM$ when $(\nabla, g)$ is a Codazzi pair on $M$ where $\overset{h}{\nabla}$ is the horizontal lift of a linear connection $\nabla$ on $M$. We finally discuss the need for further research.https://dergipark.org.tr/en/download/article-file/2616089codazzi pairinfinitesimal fiber-preserving conformal transformationinfinitesimal homothetic transformationmus-cheeger-gromoll type metrictangent bundle
spellingShingle Murat Altunbaş
A Short Note on a Mus-Cheeger-Gromoll Type Metric
Journal of New Theory
codazzi pair
infinitesimal fiber-preserving conformal transformation
infinitesimal homothetic transformation
mus-cheeger-gromoll type metric
tangent bundle
title A Short Note on a Mus-Cheeger-Gromoll Type Metric
title_full A Short Note on a Mus-Cheeger-Gromoll Type Metric
title_fullStr A Short Note on a Mus-Cheeger-Gromoll Type Metric
title_full_unstemmed A Short Note on a Mus-Cheeger-Gromoll Type Metric
title_short A Short Note on a Mus-Cheeger-Gromoll Type Metric
title_sort short note on a mus cheeger gromoll type metric
topic codazzi pair
infinitesimal fiber-preserving conformal transformation
infinitesimal homothetic transformation
mus-cheeger-gromoll type metric
tangent bundle
url https://dergipark.org.tr/en/download/article-file/2616089
work_keys_str_mv AT murataltunbas ashortnoteonamuscheegergromolltypemetric
AT murataltunbas shortnoteonamuscheegergromolltypemetric