Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM
The accurate and stable prediction of crude oil prices holds significant value, providing insightful guidance for investors and decision-makers. The intricate interplay of factors influencing oil prices and the pronounced fluctuations present significant obstacles within the realm of oil price forec...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/9/2246 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The accurate and stable prediction of crude oil prices holds significant value, providing insightful guidance for investors and decision-makers. The intricate interplay of factors influencing oil prices and the pronounced fluctuations present significant obstacles within the realm of oil price forecasting. This study introduces a novel hybrid model framework, distinct from the conventional methods, that integrates influencing factors for oil price prediction. First, using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) extract mode components from crude oil prices. Second, using the Adaptive Copula-based Feature Selection (ACBFS), rooted in Copula theory, facilitates the integration of the influencing factors; ACBFS enhances both accuracy and stability in feature selection, thereby amplifying predictive performance and interpretability. Third, low-frequency modes are predicted through an Attention Mechanism-based Long and Short-Term Memory Neural Network (AM-LSTM), optimized using Bayesian Optimization and Hyperband (BOHB). Conversely, high-frequency modes are forecasted using Extreme Gradient Boosting Models (XGboost). Finally, the error correction mechanism further enhances the predictive accuracy. The experimental results show that the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the proposed hybrid prediction framework are the lowest compared to the benchmark model, at 0.7333 and 1.1069, respectively, which proves that the designed prediction structure has better efficiency and higher accuracy and stability. |
|---|---|
| ISSN: | 1996-1073 |