Respiratory Rate Sensing for a Non-Stationary Human Assisted by Motion Detection
Non-contact human respiration rate monitoring can be used for sleep apnea detection and home care. Typically, the human body does not remain stationary for long periods, and body movement can significantly affect the performance of non-contact respiratory monitoring. Because the breathing rate gener...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/7/2267 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Non-contact human respiration rate monitoring can be used for sleep apnea detection and home care. Typically, the human body does not remain stationary for long periods, and body movement can significantly affect the performance of non-contact respiratory monitoring. Because the breathing rate generally remains stable over short periods, using measurements from only a portion of the radar echo signals does not result in significant errors, and these errors will be smaller than those caused by body movement. However, selecting a window size that is too short reduces frequency resolution, leading to increased estimation errors. Choosing an appropriate window length can improve estimation accuracy. In this paper, we propose an algorithm to determine whether the subject is stationary and select the received signal with minimal body movement. Experimental results are compared using alternative schemes, including fast Fourier transform (FFT), short-time Fourier transform (STFT), and RGB-D camera-assisted methods, in terms of root mean square error (RMSE) performance. |
|---|---|
| ISSN: | 1424-8220 |