Respiratory Rate Sensing for a Non-Stationary Human Assisted by Motion Detection

Non-contact human respiration rate monitoring can be used for sleep apnea detection and home care. Typically, the human body does not remain stationary for long periods, and body movement can significantly affect the performance of non-contact respiratory monitoring. Because the breathing rate gener...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsi-Chou Hsu, Wei-Hsin Chen, Yi-Wen Lin, Yung-Fa Huang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/7/2267
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-contact human respiration rate monitoring can be used for sleep apnea detection and home care. Typically, the human body does not remain stationary for long periods, and body movement can significantly affect the performance of non-contact respiratory monitoring. Because the breathing rate generally remains stable over short periods, using measurements from only a portion of the radar echo signals does not result in significant errors, and these errors will be smaller than those caused by body movement. However, selecting a window size that is too short reduces frequency resolution, leading to increased estimation errors. Choosing an appropriate window length can improve estimation accuracy. In this paper, we propose an algorithm to determine whether the subject is stationary and select the received signal with minimal body movement. Experimental results are compared using alternative schemes, including fast Fourier transform (FFT), short-time Fourier transform (STFT), and RGB-D camera-assisted methods, in terms of root mean square error (RMSE) performance.
ISSN:1424-8220