Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems in ecologically fragile re...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/7/890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems in ecologically fragile regions. In this study, four stand types at different succession stages in the transition zone of Xinglong Mountain were selected as the study objective. The C densities of the ecosystem, vegetation, plant debris, and soil of each stand type were estimated, and the related driving factors were quantified. The results showed that the forest ecosystem C density continuously increased significantly with natural succession (381.23 Mg/hm<sup>2</sup> to 466.88 Mg/hm<sup>2</sup>), indicating that the ecosystem has a high potential for C sequestration with progressive forest succession. The increase in ecosystem C density was mainly contributed to by the vegetation C density, which was jointly affected by the vegetation characteristics (C sink, mean diameter at breast height, mean tree height), litter C/N (nitrogen), and surface soil C/N, with factors explaining 95.1% of the variation in vegetation C density, while the net effect of vegetation characteristics was the strongest (13.9%). Overall, this study provides a new insight for understanding the C cycle mechanism in ecologically fragile areas and further improves the theoretical framework for understanding the C sink function of forest ecosystems. |
|---|---|
| ISSN: | 2073-4433 |