An automated computational framework to construct printability maps for additively manufactured metal alloys

Abstract In metal additive manufacturing (AM), processing parameters can affect the probability of macroscopic defect formation (lack-of-fusion, keyholing, balling), which can, in turn, jeopardize the final product’s integrity. A printability map classifies regions in the processing space where an a...

Full description

Saved in:
Bibliographic Details
Main Authors: Sofia Sheikh, Brent Vela, Pejman Honarmandi, Peter Morcos, David Shoukr, Ibrahim Karaman, Alaa Elwany, Raymundo Arróyave
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-024-01436-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In metal additive manufacturing (AM), processing parameters can affect the probability of macroscopic defect formation (lack-of-fusion, keyholing, balling), which can, in turn, jeopardize the final product’s integrity. A printability map classifies regions in the processing space where an alloy can be printed with or without porosity defects. However, the creation of these printability maps is resource-intensive. Previous efforts to generate printability maps have required single-track experiments on pre-alloyed powder, limiting the utilization of these printability maps for the high-throughput design of printable alloys. We address these challenges in the case of Laser Powder Bed Fusion AM (L-PBF-AM) by introducing a fully computational, predictive approach to create printability maps for arbitrary alloys. Our framework uses physics-based thermal models and a variety of defect formation criteria. We benchmark the predictive ability of the proposed framework against literature data for the following commonly printed alloys: 316 Stainless Steel, Inconel 718, Ti-6Al-4V, AF96, and Ni-5Nb. Furthermore, we deploy the framework on NiTi-based Shape Memory Alloys (SMAs) as a case study. We scrutinize the accuracy of various sets of defect criteria and use these accuracy measurements to create an uncertainty-aware probabilistic framework capable of predicting the printability maps of arbitrary alloys. This framework has the potential to guide alloy designers to potentially easy-to-print alloys, enabling the co-design of high-performing printable alloys.
ISSN:2057-3960