Mechanical, Electrical and Fractural Characteristics of Carbon Nanomaterial-Added Cement Composites
This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results i...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/9/4673 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results indicated that CNT- and CNF-added composites exhibited percolation threshold ranges of 0.1% to 0.3% and 0.3% to 1.0%, respectively. Regarding the mechanical properties tests, the composite with a 1.0% CNF showed the best results. Furthermore, fractural characteristics results indicated that even additions of the smallest dosage, i.e., 0.1% of CNM, exhibited positive results. Overall, the study highlighted the potential of CNM-added cement composites. |
|---|---|
| ISSN: | 2076-3417 |