Development of Fast Analytical Method for the Detection and Quantification of Honey Adulteration Using Vibrational Spectroscopy and Chemometrics Tools
In this study, the Fourier transform mid-infrared (FT-MIR) spectroscopy technique combined with chemometrics methods was used to monitor adulteration of honey with sugar syrup. Spectral data were recorded from a wavenumber region of 4000–600 cm−1, with a spectral resolution of 4 cm−1. Principal comp...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Journal of Analytical Methods in Chemistry |
| Online Access: | http://dx.doi.org/10.1155/2020/8816249 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, the Fourier transform mid-infrared (FT-MIR) spectroscopy technique combined with chemometrics methods was used to monitor adulteration of honey with sugar syrup. Spectral data were recorded from a wavenumber region of 4000–600 cm−1, with a spectral resolution of 4 cm−1. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used for qualitative analysis to discriminate between adulterated and nonadulterated honey. For quantitative analysis, we used partial least-squares regression (PLS-R) and the support vector machine (SVM) to develop optimal calibration models. The use of PCA shows that the first two principal components account for 96% of the total variability. PCA and HCA allow classifying the dataset into two groups: adulterated and unadulterated honey. The use of the PLS-R and SVM-R calibration models for the quantification of adulteration shows high-performance capabilities represented by a high value of correlation coefficients R2 greater than 98% and 95% with lower values of root mean square error (RMSE) less than 1.12 and 1.85 using PLS-R and SVM-R, respectively. Our results indicate that FT-MIR spectroscopy combined with chemometrics techniques can be used successfully as a simple, rapid, and nondestructive method for the quantification and discrimination of adulterated honey. |
|---|---|
| ISSN: | 2090-8865 2090-8873 |