Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations
We study the charged black-hole solutions of a 2 + 1 nonlinear electrodynamical theory with a cosmological constant. Considered as a one-parameter group of theories (the exponent of the squared Maxwell tensor), the causal structure of all possible black holes is scrutinized. We analyze the singulari...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Universe |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2218-1997/11/6/197 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study the charged black-hole solutions of a 2 + 1 nonlinear electrodynamical theory with a cosmological constant. Considered as a one-parameter group of theories (the exponent of the squared Maxwell tensor), the causal structure of all possible black holes is scrutinized. We analyze the singularity character that each theory delivers, together with their horizons and the plausible limitations in black-hole charges. The investigation demonstrates a rich structure of three different groups of theories according to the qualitative behavior of the singularity, horizons and limitations in the geometric charges. For such groups, we study the effect of a scalar field propagating in the spacetime of fixed black holes. All analyzed geometries are stable to such linear perturbations, evolving as usual quasinormal spectra of the black holes calculated for the different cases. |
|---|---|
| ISSN: | 2218-1997 |