Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations

We study the charged black-hole solutions of a 2 + 1 nonlinear electrodynamical theory with a cosmological constant. Considered as a one-parameter group of theories (the exponent of the squared Maxwell tensor), the causal structure of all possible black holes is scrutinized. We analyze the singulari...

Full description

Saved in:
Bibliographic Details
Main Author: Rodrigo Dal Bosco Fontana
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/6/197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the charged black-hole solutions of a 2 + 1 nonlinear electrodynamical theory with a cosmological constant. Considered as a one-parameter group of theories (the exponent of the squared Maxwell tensor), the causal structure of all possible black holes is scrutinized. We analyze the singularity character that each theory delivers, together with their horizons and the plausible limitations in black-hole charges. The investigation demonstrates a rich structure of three different groups of theories according to the qualitative behavior of the singularity, horizons and limitations in the geometric charges. For such groups, we study the effect of a scalar field propagating in the spacetime of fixed black holes. All analyzed geometries are stable to such linear perturbations, evolving as usual quasinormal spectra of the black holes calculated for the different cases.
ISSN:2218-1997