MFFP-Net: Building Segmentation in Remote Sensing Images via Multi-Scale Feature Fusion and Foreground Perception Enhancement

The accurate segmentation of small target buildings in high-resolution remote sensing images remains challenging due to two critical issues: (1) small target buildings often occupy few pixels in complex backgrounds, leading to frequent background confusion, and (2) significant intra-class variance c...

Full description

Saved in:
Bibliographic Details
Main Authors: Huajie Xu, Qiukai Huang, Haikun Liao, Ganxiao Nong, Wei Wei
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1875
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate segmentation of small target buildings in high-resolution remote sensing images remains challenging due to two critical issues: (1) small target buildings often occupy few pixels in complex backgrounds, leading to frequent background confusion, and (2) significant intra-class variance complicates feature representation compared to conventional semantic segmentation tasks. To address these challenges, we propose a novel Multi-Scale Feature Fusion and Foreground Perception Enhancement Network (MFFP-Net). This framework introduces three key innovations: (1) a Multi-Scale Feature Fusion (MFF) module that hierarchically aggregates shallow features through cross-level connections to enhance fine-grained detail preservation, (2) a Foreground Perception Enhancement (FPE) module that establishes pixel-wise affinity relationships within foreground regions to mitigate intra-class variance effects, and (3) a Dual-Path Attention (DPA) mechanism combining parallel global and local attention pathways to jointly capture structural details and long-range contextual dependencies. Experimental results demonstrate that the IoU of the proposed method achieves improvements of 0.44%, 0.98% and 0.61% compared to mainstream state-of-the-art methods on the WHU Building, Massachusetts Building, and Inria Aerial Image Labeling datasets, respectively, validating its effectiveness in handling small targets and intra-class variance while maintaining robustness in complex scenarios.
ISSN:2072-4292