Initiating the Effective Unification of Black Hole Horizon Area and Entropy Quantization with Quasi-Normal Modes
Black hole (BH) area quantization may be the key to unlocking a unifying theory of quantum gravity (QG). Surmounting evidence in the field of BH research continues to support a horizon (surface) area with a discrete and uniformly spaced spectrum, but there is still no general agreement on the level...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2014/530547 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Black hole (BH) area quantization may be the key to unlocking a
unifying theory of quantum gravity (QG). Surmounting evidence in the
field of BH research continues to support a horizon (surface) area with
a discrete and uniformly spaced spectrum, but there is still no general
agreement on the level spacing. In the specialized and important BH case
study, our objective is to report and examine the pertinent groundbreaking
work of the strictly thermal and nonstrictly thermal spectrum level
spacing of the BH horizon area quantization with included entropy calculations,
which aims to tackle this gigantic problem. In particular, such
work exemplifies a series of imperative corrections that eventually permits
a BH’s horizon area spectrum to be generalized from strictly thermal to nonstrictly thermal with entropy results, thereby capturing multiple preceding
developments by launching an effective unification between them.
Moreover, the results are significant because quasi-normal modes (QNM)
and “effective states” characterize the transitions between the established
levels of the nonstrictly thermal spectrum. |
---|---|
ISSN: | 1687-7357 1687-7365 |