Canopy Height and Climate Dryness Parsimoniously Explain Spatial Variation of Unstressed Stomatal Conductance

Abstract The spatio‐temporal variation of stomatal conductance directly regulates photosynthesis, water partitioning, and biosphere‐atmosphere interactions. While many studies have focused on stomatal response to stresses, the spatial variation of unstressed stomatal conductance remains poorly deter...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanlan Liu, Olivia Flournoy, Quan Zhang, Kimberly A. Novick, Randal D. Koster, Alexandra G. Konings
Format: Article
Language:English
Published: Wiley 2022-08-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2022GL099339
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The spatio‐temporal variation of stomatal conductance directly regulates photosynthesis, water partitioning, and biosphere‐atmosphere interactions. While many studies have focused on stomatal response to stresses, the spatial variation of unstressed stomatal conductance remains poorly determined, and is usually characterized in land surface models (LSMs) simply based on plant functional type (PFT). Here, we derived unstressed stomatal conductance at the ecosystem‐scale using observations from 115 global FLUXNET sites. When aggregated by PFTs, the across‐PFT pattern was highly consistent with the parameterizations of LSMs. However, PFTs alone captured only 17% of the variation in unstressed stomatal conductance across sites. Within the same PFT, unstressed stomatal conductance was negatively related to climate dryness and canopy height, which explained 45% of the total spatial variation. Our results highlight the importance of plant‐environment interactions in shaping stomatal traits. The trait‐environment relationship established here provides an empirical approach for improved parameterizations of stomatal conductance in LSMs.
ISSN:0094-8276
1944-8007