An Introduction to i-Commutative Rings

In this paper, we introduce a new class of rings, called i-commutative rings, by extending the concept of commutative-like rings using idempotent elements. In particular, we study rings with the property that, whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&quo...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Saad, Usama A. Aburawash, Ahmed M. A. El-Sayed, Nour Nabil
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/253
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588101145329664
author Muhammad Saad
Usama A. Aburawash
Ahmed M. A. El-Sayed
Nour Nabil
author_facet Muhammad Saad
Usama A. Aburawash
Ahmed M. A. El-Sayed
Nour Nabil
author_sort Muhammad Saad
collection DOAJ
description In this paper, we introduce a new class of rings, called i-commutative rings, by extending the concept of commutative-like rings using idempotent elements. In particular, we study rings with the property that, whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mo>+</mo><mi>c</mi><mi>d</mi></mrow></semantics></math></inline-formula> is a nontrivial idempotent, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mi>a</mi><mo>+</mo><mi>d</mi><mi>c</mi></mrow></semantics></math></inline-formula> is idempotent. We explore the basic properties of these rings and their relations with other rings. Moreover, we provide some examples using matrices and describe the structure of the idempotent elements in these rings.
format Article
id doaj-art-f0e14b31534f4bc080c85359ef937660
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-f0e14b31534f4bc080c85359ef9376602025-01-24T13:39:54ZengMDPI AGMathematics2227-73902025-01-0113225310.3390/math13020253An Introduction to i-Commutative RingsMuhammad Saad0Usama A. Aburawash1Ahmed M. A. El-Sayed2Nour Nabil3Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, EgyptDepartment of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, EgyptDepartment of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, EgyptDepartment of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, EgyptIn this paper, we introduce a new class of rings, called i-commutative rings, by extending the concept of commutative-like rings using idempotent elements. In particular, we study rings with the property that, whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>b</mi><mo>+</mo><mi>c</mi><mi>d</mi></mrow></semantics></math></inline-formula> is a nontrivial idempotent, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mi>a</mi><mo>+</mo><mi>d</mi><mi>c</mi></mrow></semantics></math></inline-formula> is idempotent. We explore the basic properties of these rings and their relations with other rings. Moreover, we provide some examples using matrices and describe the structure of the idempotent elements in these rings.https://www.mdpi.com/2227-7390/13/2/253i-commutativei-reversibleidempotenttriangular matrix ringsMorita context
spellingShingle Muhammad Saad
Usama A. Aburawash
Ahmed M. A. El-Sayed
Nour Nabil
An Introduction to i-Commutative Rings
Mathematics
i-commutative
i-reversible
idempotent
triangular matrix rings
Morita context
title An Introduction to i-Commutative Rings
title_full An Introduction to i-Commutative Rings
title_fullStr An Introduction to i-Commutative Rings
title_full_unstemmed An Introduction to i-Commutative Rings
title_short An Introduction to i-Commutative Rings
title_sort introduction to i commutative rings
topic i-commutative
i-reversible
idempotent
triangular matrix rings
Morita context
url https://www.mdpi.com/2227-7390/13/2/253
work_keys_str_mv AT muhammadsaad anintroductiontoicommutativerings
AT usamaaaburawash anintroductiontoicommutativerings
AT ahmedmaelsayed anintroductiontoicommutativerings
AT nournabil anintroductiontoicommutativerings
AT muhammadsaad introductiontoicommutativerings
AT usamaaaburawash introductiontoicommutativerings
AT ahmedmaelsayed introductiontoicommutativerings
AT nournabil introductiontoicommutativerings