SWMD-YOLO: A Lightweight Model for Tomato Detection in Greenhouse Environments
The accurate detection of occluded tomatoes in complex greenhouse environments remains challenging due to the limited feature representation ability and high computational costs of existing models. This study proposes SWMD-YOLO, a lightweight multi-scale detection network optimized for greenhouse sc...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/15/7/1593 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The accurate detection of occluded tomatoes in complex greenhouse environments remains challenging due to the limited feature representation ability and high computational costs of existing models. This study proposes SWMD-YOLO, a lightweight multi-scale detection network optimized for greenhouse scenarios. The model integrates switchable atrous convolution (SAConv) and wavelet transform convolution (WTConv) for the dynamic adjustment of receptive fields for occlusion-adaptive feature extraction and to decompose features into multi-frequency sub-bands, respectively, thus preserving critical edge details of obscured targets. Traditional down-sampling is replaced with a dynamic sample (DySample) operator to minimize information loss during resolution transitions, while a multi-scale convolutional attention (MSCA) mechanism prioritizes discriminative regions under varying illumination. Additionally, we introduce Focaler-IoU, a novel loss function that addresses sample imbalance by dynamically re-weighting gradients for partially occluded and multi-scale targets. Experiments on greenhouse tomato data sets demonstrate that SWMD-YOLO achieves 93.47% mAP50 with a detection speed of 75.68 FPS, outperforming baseline models in accuracy while reducing parameters by 18.9%. Cross-data set validation confirms the model’s robustness to complex backgrounds and lighting variations. Overall, the proposed model provides a computationally efficient solution for real-time crop monitoring in resource-constrained precision agriculture systems. |
|---|---|
| ISSN: | 2073-4395 |