Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity
Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/14/24/2048 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850086840346869760 |
|---|---|
| author | Shuo Yang Wenhui Li Kaiyue Li Ping Huang Yuquan Zhuo Keyan Liu Ziwen Yang Donglai Han |
| author_facet | Shuo Yang Wenhui Li Kaiyue Li Ping Huang Yuquan Zhuo Keyan Liu Ziwen Yang Donglai Han |
| author_sort | Shuo Yang |
| collection | DOAJ |
| description | Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott–Schottky (M-S) and band structure analyses. This transformation enhanced the density of holes (h<sup>+</sup>) as primary charge carriers and resulted in the most negative conduction band (CB) position (−0.822 V vs. NHE), which facilitated the generation of superoxide radicals (·O<sup>2−</sup>) and enhanced photocatalytic activity. Among the samples, the BiOI-0.25-60 NSs (synthesized with 0.25 g of mannitol at 60 °C) exhibited the highest performance, characterized by the largest specific surface area (24.46 m<sup>2</sup>/g), optimal band gap energy (2.28 eV), and efficient photogenerated charge separation. Photocatalytic experiments demonstrated that BiOI-0.25-60 NSs achieved superior methylene blue (MB) degradation efficiency of 96.5% under simulated sunlight, 1.14 times higher than BiOI-0-70 NSs. Additionally, BiOI-0.25-60 NSs effectively degraded tetracycline (TC), 2,4-dichlorophenol (2,4-D), and rhodamine B (Rh B). Key factors such as photocatalyst concentration, MB concentration, and solution pH were analyzed, and the BiOI-0.25-60 NSs demonstrated excellent recyclability, retaining over 94.3% of their activity after three cycles. Scavenger tests further identified ·O<sup>2−</sup> and h<sup>+</sup> as the dominant active species driving the photocatalytic process. In this study, the pivotal role of mannitol in modulating the semiconductor characteristics of BiOI nanomaterials is underscored, particularly in promoting the n-type to p-type transition and enhancing photocatalytic efficiency. These findings provide a valuable strategy for designing high-performance p-type photocatalysts for environmental remediation applications. |
| format | Article |
| id | doaj-art-f08575ec9c9c4ae0bb39210d5bef0f5d |
| institution | DOAJ |
| issn | 2079-4991 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Nanomaterials |
| spelling | doaj-art-f08575ec9c9c4ae0bb39210d5bef0f5d2025-08-20T02:43:20ZengMDPI AGNanomaterials2079-49912024-12-011424204810.3390/nano14242048Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic ActivityShuo Yang0Wenhui Li1Kaiyue Li2Ping Huang3Yuquan Zhuo4Keyan Liu5Ziwen Yang6Donglai Han7School of Materials Science and Engineering, Changchun University, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, ChinaSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, ChinaPhotocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott–Schottky (M-S) and band structure analyses. This transformation enhanced the density of holes (h<sup>+</sup>) as primary charge carriers and resulted in the most negative conduction band (CB) position (−0.822 V vs. NHE), which facilitated the generation of superoxide radicals (·O<sup>2−</sup>) and enhanced photocatalytic activity. Among the samples, the BiOI-0.25-60 NSs (synthesized with 0.25 g of mannitol at 60 °C) exhibited the highest performance, characterized by the largest specific surface area (24.46 m<sup>2</sup>/g), optimal band gap energy (2.28 eV), and efficient photogenerated charge separation. Photocatalytic experiments demonstrated that BiOI-0.25-60 NSs achieved superior methylene blue (MB) degradation efficiency of 96.5% under simulated sunlight, 1.14 times higher than BiOI-0-70 NSs. Additionally, BiOI-0.25-60 NSs effectively degraded tetracycline (TC), 2,4-dichlorophenol (2,4-D), and rhodamine B (Rh B). Key factors such as photocatalyst concentration, MB concentration, and solution pH were analyzed, and the BiOI-0.25-60 NSs demonstrated excellent recyclability, retaining over 94.3% of their activity after three cycles. Scavenger tests further identified ·O<sup>2−</sup> and h<sup>+</sup> as the dominant active species driving the photocatalytic process. In this study, the pivotal role of mannitol in modulating the semiconductor characteristics of BiOI nanomaterials is underscored, particularly in promoting the n-type to p-type transition and enhancing photocatalytic efficiency. These findings provide a valuable strategy for designing high-performance p-type photocatalysts for environmental remediation applications.https://www.mdpi.com/2079-4991/14/24/2048BiOI nanosheetsphotocatalystsmannitoln-typep-type |
| spellingShingle | Shuo Yang Wenhui Li Kaiyue Li Ping Huang Yuquan Zhuo Keyan Liu Ziwen Yang Donglai Han Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity Nanomaterials BiOI nanosheets photocatalysts mannitol n-type p-type |
| title | Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity |
| title_full | Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity |
| title_fullStr | Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity |
| title_full_unstemmed | Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity |
| title_short | Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity |
| title_sort | engineering n type and p type bioi nanosheets influence of mannitol on semiconductor behavior and photocatalytic activity |
| topic | BiOI nanosheets photocatalysts mannitol n-type p-type |
| url | https://www.mdpi.com/2079-4991/14/24/2048 |
| work_keys_str_mv | AT shuoyang engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT wenhuili engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT kaiyueli engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT pinghuang engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT yuquanzhuo engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT keyanliu engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT ziwenyang engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity AT donglaihan engineeringntypeandptypebioinanosheetsinfluenceofmannitolonsemiconductorbehaviorandphotocatalyticactivity |