A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems

The work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the $L^2$ sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filt...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiao, Huijie, Zhu, Shengqing
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.637/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206200084463616
author Qiao, Huijie
Zhu, Shengqing
author_facet Qiao, Huijie
Zhu, Shengqing
author_sort Qiao, Huijie
collection DOAJ
description The work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the $L^2$ sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filtering of them in the $L^2$ sense.
format Article
id doaj-art-f04a3e443f2746698504014db7f645bd
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-f04a3e443f2746698504014db7f645bd2025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111287129910.5802/crmath.63710.5802/crmath.637A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systemsQiao, Huijie0Zhu, Shengqing1School of Mathematics, Southeast University, Nanjing, Jiangsu 211189, P.R.ChinaSchool of Mathematics, Southeast University, Nanjing, Jiangsu 211189, P.R.ChinaThe work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the $L^2$ sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filtering of them in the $L^2$ sense.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.637/Multiscale McKean–Vlasov stochastic systemsaverage principlenonlinear filteringlimit theorem
spellingShingle Qiao, Huijie
Zhu, Shengqing
A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
Comptes Rendus. Mathématique
Multiscale McKean–Vlasov stochastic systems
average principle
nonlinear filtering
limit theorem
title A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
title_full A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
title_fullStr A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
title_full_unstemmed A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
title_short A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
title_sort limit theorem of nonlinear filtering for multiscale mckean vlasov stochastic systems
topic Multiscale McKean–Vlasov stochastic systems
average principle
nonlinear filtering
limit theorem
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.637/
work_keys_str_mv AT qiaohuijie alimittheoremofnonlinearfilteringformultiscalemckeanvlasovstochasticsystems
AT zhushengqing alimittheoremofnonlinearfilteringformultiscalemckeanvlasovstochasticsystems
AT qiaohuijie limittheoremofnonlinearfilteringformultiscalemckeanvlasovstochasticsystems
AT zhushengqing limittheoremofnonlinearfilteringformultiscalemckeanvlasovstochasticsystems