The Quality Prediction of Olive and Sunflower Oils Using NIR Spectroscopy and Chemometrics: A Sustainable Approach
This study presents a novel approach combining near-infrared (NIR) spectroscopy with multivariate calibration to develop simplified yet robust regression models for evaluating the quality of various edible oils. Using a reduced number of NIR wavelengths selected via the stepwise decorrelation method...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Foods |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-8158/14/13/2152 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study presents a novel approach combining near-infrared (NIR) spectroscopy with multivariate calibration to develop simplified yet robust regression models for evaluating the quality of various edible oils. Using a reduced number of NIR wavelengths selected via the stepwise decorrelation method (SELECT) and ordinary least squares (OLS) regression, the models quantify pigments (carotenoids and chlorophyll), antioxidant activity, and key sensory attributes (rancid, fruity green, fruity ripe, bitter, and pungent) in nine extra virgin olive oil (EVOO) varieties. The dataset also includes low-quality olive oils (e.g., refined and pomace oils, supplemented or not with hydroxytyrosol) and sunflower oils, both before and after deep-frying. SELECT improves model performance by identifying key wavelengths—up to 30 out of 700—and achieves high correlation coefficients (R = 0.86–0.96) with low standard errors. The number of latent variables ranges from 26 to 30, demonstrating adaptability to different oil properties. The best models yield low leave-one-out (LOO) prediction errors, confirming their accuracy (e.g., 1.36 mg/kg for carotenoids and 0.88 for rancidity). These results demonstrate that SELECT–OLS regression combined with NIR spectroscopy provides a fast, cost-effective, and reliable method for assessing oil quality under diverse processing conditions, including deep-frying, making it highly suitable for quality control in the edible oils industry. |
|---|---|
| ISSN: | 2304-8158 |