The CRISPR associated protein Cas4 Is a 5' to 3' DNA exonuclease with an iron-sulfur cluster.
The Cas4 protein is one of the core CRISPR-associated (Cas) proteins implicated in the prokaryotic CRISPR system for antiviral defence. Cas4 is thought to play a role in the capture of new viral DNA sequences for incorporation into the host genome. No biochemical activity has been reported for Cas4,...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2012-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047232&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Cas4 protein is one of the core CRISPR-associated (Cas) proteins implicated in the prokaryotic CRISPR system for antiviral defence. Cas4 is thought to play a role in the capture of new viral DNA sequences for incorporation into the host genome. No biochemical activity has been reported for Cas4, but it is predicted to include a RecB nuclease domain. We show here that Cas4 family proteins from the archaeon Sulfolobus solfataricus utilise four conserved cysteine residues to bind an iron-sulfur cluster in an arrangement reminiscent of the AddB nuclease of Bacillus subtilis. The Cas4 family protein Sso0001 is a 5' to 3' single stranded DNA exonuclease in vitro that is stalled by extrahelical DNA adducts. A role for Cas4 in DNA duplex strand resectioning to generate recombinogenic 3' single stranded DNA overhangs is proposed. Comparison of the AddB structure with that of a related bacterial nuclease from Eubacterium rectales reveals that the iron-sulfur cluster can be replaced by a zinc ion without disrupting the protein structure, with implications for the evolution of iron-sulfur binding proteins. |
|---|---|
| ISSN: | 1932-6203 |