Nonoscillation of Second-Order Dynamic Equations with Several Delays

Existence of nonoscillatory solutions for the second-order dynamic equation (A0xΔ)Δ(t)+∑i∈[1,n]ℕAi(t)x(αi(t))=0 for t∈[t0,∞)T is investigated in this paper. The results involve nonoscillation criteria in terms of relevant dynamic and generalized characteristic inequalities, comparison theorems, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Elena Braverman, Başak Karpuz
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/591254
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existence of nonoscillatory solutions for the second-order dynamic equation (A0xΔ)Δ(t)+∑i∈[1,n]ℕAi(t)x(αi(t))=0 for t∈[t0,∞)T is investigated in this paper. The results involve nonoscillation criteria in terms of relevant dynamic and generalized characteristic inequalities, comparison theorems, and explicit nonoscillation and oscillation conditions. This allows to obtain most known nonoscillation results for second-order delay differential equations in the case A0(t)≡1 for t∈[t0,∞)R and for second-order nondelay difference equations (αi(t)=t+1 for t∈[t0,∞)N). Moreover, the general results imply new nonoscillation tests for delay differential equations with arbitrary A0 and for second-order delay difference equations. Known nonoscillation results for quantum scales can also be deduced.
ISSN:1085-3375
1687-0409