Two 2-D DOA Estimation Methods with Full and Partial Generalized Virtual Aperture Extension Technology

We address the two-dimensional direction-of-arrival (2-D DOA) estimation problem for L-shaped uniform linear array (ULA) using two kinds of approaches represented by the subspace-like method and the sparse reconstruction method. Particular interest emphasizes on exploiting the generalized conjugate...

Full description

Saved in:
Bibliographic Details
Main Authors: Riheng Wu, Yangyang Dong, Zhenhai Zhang, Le Xu
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/3924569
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the two-dimensional direction-of-arrival (2-D DOA) estimation problem for L-shaped uniform linear array (ULA) using two kinds of approaches represented by the subspace-like method and the sparse reconstruction method. Particular interest emphasizes on exploiting the generalized conjugate symmetry property of L-shaped ULA to maximize the virtual array aperture for two kinds of approaches. The subspace-like method develops the rotational invariance property of the full virtual received data model by introducing two azimuths and two elevation selection matrices. As a consequence, the problem to estimate azimuths represented by an eigenvalue matrix can be first solved by applying the eigenvalue decomposition (EVD) to a known nonsingular matrix, and the angles pairing is automatically implemented via the associate eigenvector. For the sparse reconstruction method, first, we give a lemma to verify that the received data model is equivalent to its dictionary-based sparse representation under certain mild conditions, and the uniqueness of solutions is guaranteed by assuming azimuth and elevation indices to lie on different rows and columns of sparse signal cross-correlation matrix; we then derive two kinds of data models to reconstruct sparse 2-D DOA via M-FOCUSS with and without compressive sensing (CS) involvements; finally, the numerical simulations validate the proposed approaches outperform the existing methods at a low or moderate complexity cost.
ISSN:1687-5869
1687-5877