The Effect of Reduced Co Content in CrMnFeCoNi Alloys: A First Principles Study

This study investigates high-entropy CrMnFeCoNi alloys with reduced Co content using density functional theory. The muffin-tin orbital method and coherent potential approximation successfully predict experimental values for volume, magnetic moment, and elastic constants. Thermodynamic properties, an...

Full description

Saved in:
Bibliographic Details
Main Authors: Gustav Johansson, Johan-Michael Kuorak, Oleg Gorbatov, Corina Etz
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/362
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates high-entropy CrMnFeCoNi alloys with reduced Co content using density functional theory. The muffin-tin orbital method and coherent potential approximation successfully predict experimental values for volume, magnetic moment, and elastic constants. Thermodynamic properties, analyzed using the Debye–Gruneisen model, emphasize the need to consider both electronic and magnetic contributions to the free energy. The alloys exhibit anti-Invar behavior, with a significant increase in the linear thermal expansion coefficient with increased temperature. This effect is slightly more pronounced for reduced Co content, leading to a larger lattice parameter and a decrease in elastic constants. However, the changes are small, suggesting that similar mechanical properties can be achieved with lower Co content.
ISSN:2075-4701