The p-Adic Valuations of Sums of Binomial Coefficients

In this paper, we prove three supercongruences on sums of binomial coefficients conjectured by Z.-W. Sun. Let p be an odd prime and let h∈ℤ with 2h−1≡0modp. For a∈ℤ+ and pa>3, we show that ∑k=0pa−1hpa−1k2kk−h/2k≡0modpa+1. Also, for any n∈ℤ+, we have νp∑k=0n−1hn−1k2kk−h/2k≥νpn, where νpn denotes t...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Zhang, Peisen Yuan
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/9570350
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566447376695296
author Yong Zhang
Peisen Yuan
author_facet Yong Zhang
Peisen Yuan
author_sort Yong Zhang
collection DOAJ
description In this paper, we prove three supercongruences on sums of binomial coefficients conjectured by Z.-W. Sun. Let p be an odd prime and let h∈ℤ with 2h−1≡0modp. For a∈ℤ+ and pa>3, we show that ∑k=0pa−1hpa−1k2kk−h/2k≡0modpa+1. Also, for any n∈ℤ+, we have νp∑k=0n−1hn−1k2kk−h/2k≥νpn, where νpn denotes the p-adic order of n. For any integer m≡0modp and positive integer n, we have 1/pn∑k=0pn−1pn−1k2kk/−mk−mm−4/p∑k=0n−1n−1k2kk/−mk∈ℤp, where −˙ is the Legendre symbol and ℤp is the ring of p-adic integers.
format Article
id doaj-art-ef53d42ab0704d46bbdfef7e53431566
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-ef53d42ab0704d46bbdfef7e534315662025-02-03T01:04:18ZengWileyJournal of Mathematics2314-46292314-47852021-01-01202110.1155/2021/95703509570350The p-Adic Valuations of Sums of Binomial CoefficientsYong Zhang0Peisen Yuan1Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, ChinaCollege of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, ChinaIn this paper, we prove three supercongruences on sums of binomial coefficients conjectured by Z.-W. Sun. Let p be an odd prime and let h∈ℤ with 2h−1≡0modp. For a∈ℤ+ and pa>3, we show that ∑k=0pa−1hpa−1k2kk−h/2k≡0modpa+1. Also, for any n∈ℤ+, we have νp∑k=0n−1hn−1k2kk−h/2k≥νpn, where νpn denotes the p-adic order of n. For any integer m≡0modp and positive integer n, we have 1/pn∑k=0pn−1pn−1k2kk/−mk−mm−4/p∑k=0n−1n−1k2kk/−mk∈ℤp, where −˙ is the Legendre symbol and ℤp is the ring of p-adic integers.http://dx.doi.org/10.1155/2021/9570350
spellingShingle Yong Zhang
Peisen Yuan
The p-Adic Valuations of Sums of Binomial Coefficients
Journal of Mathematics
title The p-Adic Valuations of Sums of Binomial Coefficients
title_full The p-Adic Valuations of Sums of Binomial Coefficients
title_fullStr The p-Adic Valuations of Sums of Binomial Coefficients
title_full_unstemmed The p-Adic Valuations of Sums of Binomial Coefficients
title_short The p-Adic Valuations of Sums of Binomial Coefficients
title_sort p adic valuations of sums of binomial coefficients
url http://dx.doi.org/10.1155/2021/9570350
work_keys_str_mv AT yongzhang thepadicvaluationsofsumsofbinomialcoefficients
AT peisenyuan thepadicvaluationsofsumsofbinomialcoefficients
AT yongzhang padicvaluationsofsumsofbinomialcoefficients
AT peisenyuan padicvaluationsofsumsofbinomialcoefficients