Deep learning analysis of fMRI data for predicting Alzheimer's Disease: A focus on convolutional neural networks and model interpretability.

The early detection of Alzheimer's Disease (AD) is thought to be important for effective intervention and management. Here, we explore deep learning methods for the early detection of AD. We consider both genetic risk factors and functional magnetic resonance imaging (fMRI) data. However, we fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao Zhou, Sanchita Kedia, Ran Meng, Mark Gerstein
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0312848
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The early detection of Alzheimer's Disease (AD) is thought to be important for effective intervention and management. Here, we explore deep learning methods for the early detection of AD. We consider both genetic risk factors and functional magnetic resonance imaging (fMRI) data. However, we found that the genetic factors do not notably enhance the AD prediction by imaging. Thus, we focus on building an effective imaging-only model. In particular, we utilize data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), employing a 3D Convolutional Neural Network (CNN) to analyze fMRI scans. Despite the limitations posed by our dataset (small size and imbalanced nature), our CNN model demonstrates accuracy levels reaching 92.8% and an ROC of 0.95. Our research highlights the complexities inherent in integrating multimodal medical datasets. It also demonstrates the potential of deep learning in medical imaging for AD prediction.
ISSN:1932-6203