Boundedness of Bessel–Riesz Operator in Variable Lebesgue Measure Spaces
In this manuscript, we establish the boundedness of the Bessel–Riesz operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mrow><mi>α</mi><mo>,...
Saved in:
| Main Authors: | Muhammad Nasir, Ali Raza, Luminiţa-Ioana Cotîrlă, Daniel Breaz |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/3/410 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
by: Muhammad Nasir, et al.
Published: (2025-05-01) -
Boundedness and Sobolev-Type Estimates for the Exponentially Damped Riesz Potential with Applications to the Regularity Theory of Elliptic PDEs
by: Waqar Afzal, et al.
Published: (2025-07-01) -
Some New Sobolev-Type Theorems for the Rough Riesz Potential Operator on Grand Variable Herz Spaces
by: Ghada AlNemer, et al.
Published: (2025-06-01) -
A maximal Riesz-Kantorovich theorem with applications to markets with an arbitrary commodity set
by: M. M. Popov, et al.
Published: (2024-12-01) -
MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
by: Elias Zikkos
Published: (2020-07-01)