Boundedness of Bessel–Riesz Operator in Variable Lebesgue Measure Spaces
In this manuscript, we establish the boundedness of the Bessel–Riesz operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mrow><mi>α</mi><mo>,...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/3/410 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this manuscript, we establish the boundedness of the Bessel–Riesz operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mi>f</mi></mrow></semantics></math></inline-formula> in variable Lebesgue spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></semantics></math></inline-formula>. We prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mi>f</mi></mrow></semantics></math></inline-formula> is bounded from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></semantics></math></inline-formula> and from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mrow><mi>p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mrow><mi>q</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></semantics></math></inline-formula>. We explore various scenarios for the boundedness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mi>f</mi></mrow></semantics></math></inline-formula> under general conditions, including constraints on the Hardy–Littlewood maximal operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>. To prove these results, we employ the boundedness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, along with Hölder’s inequality and classical dyadic decomposition techniques. Our findings unify and generalize previous results in classical Lebesgue spaces. In some cases, the results are new even for constant exponents in Lebesgue spaces. |
|---|---|
| ISSN: | 2227-7390 |