Eigenvalues asymptotics for Stark operators

We give the eigenvalues asymptotics for the Stark operator of the form $\displaystyle-\Delta+Fx$, $F>0$ on $\displaystyle\mathrm{L}^2([0,d])$. This is given in the case when $F$ is small enough or sufficiently large. We impose various boundary conditions. The proof is based on the asymptotics o...

Full description

Saved in:
Bibliographic Details
Main Authors: Hatem Najar, Monia Raissi
Format: Article
Language:English
Published: EJAAM 2019-07-01
Series:E-Journal of Analysis and Applied Mathematics
Subjects:
Online Access:https://ejaam.org/articles/2019/10.2478-ejaam-2019-0001.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823864950186049536
author Hatem Najar
Monia Raissi
author_facet Hatem Najar
Monia Raissi
author_sort Hatem Najar
collection DOAJ
description We give the eigenvalues asymptotics for the Stark operator of the form $\displaystyle-\Delta+Fx$, $F>0$ on $\displaystyle\mathrm{L}^2([0,d])$. This is given in the case when $F$ is small enough or sufficiently large. We impose various boundary conditions. The proof is based on the asymptotics of the specialized Airy functions.
format Article
id doaj-art-ef0db9362f1643b58c42e002cf24d79c
institution Kabale University
issn 2544-9990
language English
publishDate 2019-07-01
publisher EJAAM
record_format Article
series E-Journal of Analysis and Applied Mathematics
spelling doaj-art-ef0db9362f1643b58c42e002cf24d79c2025-02-08T18:35:22ZengEJAAME-Journal of Analysis and Applied Mathematics2544-99902019-07-01201910.2478/ejaam-2019-0001Eigenvalues asymptotics for Stark operatorsHatem Najar0Monia Raissi1Département de Mathématiques, Faculté des Sciences de Moanstir, 5019 Monastir, TunisiaDépartement de Mathématiques, Faculté des Sciences de Moanstir, 5019 Monastir, TunisiaWe give the eigenvalues asymptotics for the Stark operator of the form $\displaystyle-\Delta+Fx$, $F>0$ on $\displaystyle\mathrm{L}^2([0,d])$. This is given in the case when $F$ is small enough or sufficiently large. We impose various boundary conditions. The proof is based on the asymptotics of the specialized Airy functions.https://ejaam.org/articles/2019/10.2478-ejaam-2019-0001.pdfspectral theoryschrödinger operatordirichlet and neumann laplacianstark operatoreigenvalue problemairy functions
spellingShingle Hatem Najar
Monia Raissi
Eigenvalues asymptotics for Stark operators
E-Journal of Analysis and Applied Mathematics
spectral theory
schrödinger operator
dirichlet and neumann laplacian
stark operator
eigenvalue problem
airy functions
title Eigenvalues asymptotics for Stark operators
title_full Eigenvalues asymptotics for Stark operators
title_fullStr Eigenvalues asymptotics for Stark operators
title_full_unstemmed Eigenvalues asymptotics for Stark operators
title_short Eigenvalues asymptotics for Stark operators
title_sort eigenvalues asymptotics for stark operators
topic spectral theory
schrödinger operator
dirichlet and neumann laplacian
stark operator
eigenvalue problem
airy functions
url https://ejaam.org/articles/2019/10.2478-ejaam-2019-0001.pdf
work_keys_str_mv AT hatemnajar eigenvaluesasymptoticsforstarkoperators
AT moniaraissi eigenvaluesasymptoticsforstarkoperators