Towards Predictive Maintenance in the Maritime Industry: A Component-Based Overview
The maritime industry has a significant influence on the global economy, underscoring the need for operational availability and safety through effective maintenance practices. Predictive maintenance emerges as a promising solution compared to conventional maintenance schemes currently employed by th...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/3/425 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The maritime industry has a significant influence on the global economy, underscoring the need for operational availability and safety through effective maintenance practices. Predictive maintenance emerges as a promising solution compared to conventional maintenance schemes currently employed by the industry, offering proactive failure predictions, reduced downtime events, and extended machinery lifespan. This paper addresses a critical gap in the existing literature by providing a comprehensive overview of the main data-driven PdM systems. Specifically, the review explores common issues found in vessel components (i.e., propulsion, auxiliary, electric, hull), examining how different state-of-the-art PdM architectures, ranging from basic machine learning models to advanced deep learning techniques aim to address them. Additionally, the concepts of centralized machine learning, federated, and transfer learning are also discussed, demonstrating their potential to enhance PdM systems as well as their limitations. Finally, the current challenges hindering adoption are discussed, together with the future directions to advance implementation in the field. |
|---|---|
| ISSN: | 2077-1312 |