On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj

We give a complete picture regarding the behavior of positive solutions of the following important difference equation: xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj, n∈ℕ0, where αi, i∈{1,…,k}, and βj, j∈{1,…,m}, are positive numbers such that ∑i=1kαi=∑j=1mβj=1, and pi, i∈{1,…,k}, and qj, j∈{1,…,m}, are natural nu...

Full description

Saved in:
Bibliographic Details
Main Author: Stevo Stevic
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2007/39404
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549273678381056
author Stevo Stevic
author_facet Stevo Stevic
author_sort Stevo Stevic
collection DOAJ
description We give a complete picture regarding the behavior of positive solutions of the following important difference equation: xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj, n∈ℕ0, where αi, i∈{1,…,k}, and βj, j∈{1,…,m}, are positive numbers such that ∑i=1kαi=∑j=1mβj=1, and pi, i∈{1,…,k}, and qj, j∈{1,…,m}, are natural numbers such that p1<p2<⋯<pk and q1<q2<⋯<qm. The case when gcd(p1,…,pk,q1,…,qm)=1 is the most important. For the case we prove that if all pi, i∈{1,…,k}, are even and all qj, j∈{1,…,m}, are odd, then every positive solution of this equation converges to a periodic solution of period two, otherwise, every positive solution of the equation converges to a unique positive equilibrium.
format Article
id doaj-art-ef072159589749338b8c89b8407c4bf3
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-ef072159589749338b8c89b8407c4bf32025-02-03T06:11:47ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2007-01-01200710.1155/2007/3940439404On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qjStevo Stevic0Mathematical Institute of the Serbian Academy of Sciences and Arts , Knez Mihailova 35/I, Belgrade 11001, SerbiaWe give a complete picture regarding the behavior of positive solutions of the following important difference equation: xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj, n∈ℕ0, where αi, i∈{1,…,k}, and βj, j∈{1,…,m}, are positive numbers such that ∑i=1kαi=∑j=1mβj=1, and pi, i∈{1,…,k}, and qj, j∈{1,…,m}, are natural numbers such that p1<p2<⋯<pk and q1<q2<⋯<qm. The case when gcd(p1,…,pk,q1,…,qm)=1 is the most important. For the case we prove that if all pi, i∈{1,…,k}, are even and all qj, j∈{1,…,m}, are odd, then every positive solution of this equation converges to a periodic solution of period two, otherwise, every positive solution of the equation converges to a unique positive equilibrium.http://dx.doi.org/10.1155/2007/39404
spellingShingle Stevo Stevic
On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
Discrete Dynamics in Nature and Society
title On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
title_full On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
title_fullStr On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
title_full_unstemmed On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
title_short On the Recursive Sequence xn=1+∑i=1kαixn−pi/∑j=1mβjxn−qj
title_sort on the recursive sequence xn 1 ∑i 1kαixn pi ∑j 1mβjxn qj
url http://dx.doi.org/10.1155/2007/39404
work_keys_str_mv AT stevostevic ontherecursivesequencexn1i1kaixnpij1mbjxnqj