On the decidability of boundedness problems for counter Minsky machines

In the paper the decidability of boundedness problems for counter Minsky machines is investigated. It is proved, that for Minsky machines with two counters the boundedness is partial decidable, but for the total boundedness problem does not even exist a semidecision algorithm. On the other hand, for...

Full description

Saved in:
Bibliographic Details
Main Authors: E. V. Kuzmin, D. Ju. Chalyy
Format: Article
Language:English
Published: Yaroslavl State University 2008-03-01
Series:Моделирование и анализ информационных систем
Online Access:https://www.mais-journal.ru/jour/article/view/970
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849338732463783936
author E. V. Kuzmin
D. Ju. Chalyy
author_facet E. V. Kuzmin
D. Ju. Chalyy
author_sort E. V. Kuzmin
collection DOAJ
description In the paper the decidability of boundedness problems for counter Minsky machines is investigated. It is proved, that for Minsky machines with two counters the boundedness is partial decidable, but for the total boundedness problem does not even exist a semidecision algorithm. On the other hand, for one-counter Minsky machines all these problems are polinomial (quantitatively of local machine states) decidable.
format Article
id doaj-art-eef25e44424b4157b9788b6a8f64b61d
institution Kabale University
issn 1818-1015
2313-5417
language English
publishDate 2008-03-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-eef25e44424b4157b9788b6a8f64b61d2025-08-20T03:44:18ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172008-03-011511626711On the decidability of boundedness problems for counter Minsky machinesE. V. Kuzmin0D. Ju. Chalyy1Ярославский государственный университетЯрославский государственный университетIn the paper the decidability of boundedness problems for counter Minsky machines is investigated. It is proved, that for Minsky machines with two counters the boundedness is partial decidable, but for the total boundedness problem does not even exist a semidecision algorithm. On the other hand, for one-counter Minsky machines all these problems are polinomial (quantitatively of local machine states) decidable.https://www.mais-journal.ru/jour/article/view/970
spellingShingle E. V. Kuzmin
D. Ju. Chalyy
On the decidability of boundedness problems for counter Minsky machines
Моделирование и анализ информационных систем
title On the decidability of boundedness problems for counter Minsky machines
title_full On the decidability of boundedness problems for counter Minsky machines
title_fullStr On the decidability of boundedness problems for counter Minsky machines
title_full_unstemmed On the decidability of boundedness problems for counter Minsky machines
title_short On the decidability of boundedness problems for counter Minsky machines
title_sort on the decidability of boundedness problems for counter minsky machines
url https://www.mais-journal.ru/jour/article/view/970
work_keys_str_mv AT evkuzmin onthedecidabilityofboundednessproblemsforcounterminskymachines
AT djuchalyy onthedecidabilityofboundednessproblemsforcounterminskymachines