High-sensitivity colorimetric sensor based on oxidase-like Mn3O4 nanozyme for Cys detection

Cysteine (Cys) is essential for numerous physiological processes and play a vital role in disease diagnostics, underscoring the necessity for effective and sensitive detection techniques for Cys. In this research, we introduce an ultrasensitive colorimetric approach based on oxidase-like Mn3O4 nanoz...

Full description

Saved in:
Bibliographic Details
Main Authors: Junting Liang, Dihan Duan, Lubing Sun, Jinming Li, Mengke Wang, Ziyi Chang, Rick F. Thorne, Chuanliang Chen, Demin Duan
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Sensors and Actuators Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666053925000165
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cysteine (Cys) is essential for numerous physiological processes and play a vital role in disease diagnostics, underscoring the necessity for effective and sensitive detection techniques for Cys. In this research, we introduce an ultrasensitive colorimetric approach based on oxidase-like Mn3O4 nanozymes. The nanozymes were synthesized through a straightforward wet chemical method and displayed a flower-like globular morphology, showing remarkable oxidase-like catalytic performance with a low Km value of 0.1896 mM and a high Vmax of 2.8 × 10⁻⁷ M s⁻¹. By leveraging the outstanding catalytic activities of Mn3O4 nanozymes and optimizing the TMB concentration, we developed a novel and sensitive colorimetric sensor for Cys detection. Experimental results indicated a detection range for Cys between 0.5 and 45 μM, with a lower limit of detection (LOD) of 0.02636 μM. This established method for detecting Cys reveals significant promise for the advancement of effective sensing systems.
ISSN:2666-0539