Technical Aspects of Deploying UAV and Ground Robots for Intelligent Logistics Using YOLO on Embedded Systems

Automation of logistics enhances efficiency, reduces costs, and minimizes human error. Image processing—particularly vision-based AI—enables real-time tracking, object recognition, and intelligent decision-making, thereby improving supply chain resilience. This study addresses the challenge of deplo...

Full description

Saved in:
Bibliographic Details
Main Authors: Wissem Dilmi, Sami El Ferik, Fethi Ouerdane, Mustapha K. Khaldi, Abdul-Wahid A. Saif
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2572
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automation of logistics enhances efficiency, reduces costs, and minimizes human error. Image processing—particularly vision-based AI—enables real-time tracking, object recognition, and intelligent decision-making, thereby improving supply chain resilience. This study addresses the challenge of deploying deep learning-based object detection on resource-constrained embedded platforms, such as NVIDIA Jetson devices on UAVs and ground robots, for real-time logistics applications. Specifically, we provide a comprehensive comparative analysis of YOLOv5 and YOLOv8, evaluating their performance in terms of inference speed, accuracy, and dataset-specific metrics using both the Common Objects in Context (COCO) dataset and a novel, custom logistics dataset tailored for aerial and ground-based logistics scenarios. A key contribution is the development of a user-friendly graphical user interface (GUI) for selective object visualization, enabling dynamic interaction and real-time filtering of detection results—significantly enhancing practical usability. Furthermore, we investigate and compare deployment strategies in both Python 3.9 and C# (ML. NET v3 and .NET Framework 7) environments, highlighting their respective impacts on performance and scalability. This research offers valuable insights and practical guidelines for optimizing real-time object detection deployment on embedded platforms in UAV- and ground robot-based logistics, with a focus on efficient resource utilization and enhanced operational effectiveness.
ISSN:1424-8220