Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow

Cavity flows have a wide range of low-speed applications (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>≤</mo><mn>0.3</mn></mrow></semantics>...

Full description

Saved in:
Bibliographic Details
Main Authors: Naser Al Haddabi, Konstantinos Kontis, Hossein Zare-Behtash
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/1/7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589511642578944
author Naser Al Haddabi
Konstantinos Kontis
Hossein Zare-Behtash
author_facet Naser Al Haddabi
Konstantinos Kontis
Hossein Zare-Behtash
author_sort Naser Al Haddabi
collection DOAJ
description Cavity flows have a wide range of low-speed applications (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>≤</mo><mn>0.3</mn></mrow></semantics></math></inline-formula>), such as aircraft wheel wells, ground transportations, and pipelines. They induce strong flow oscillations which can substantially increase noise, drag, vibration, and lead to structural fatigue. In the current study, a steady jet was forced from the cavity trailing edge with different momentum fluxes (<i>J</i> = 0.11 kg/m·s<sup>2</sup>, 0.44 kg/m·s<sup>2</sup>, and 0.96 kg/m·s<sup>2</sup>). The aim of this study was to investigate the impact of the steady jet on the time-averaged flow field and the cavity separated shear layer oscillations for an open cavity with a length-to-depth ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>θ</mi></msub><mo>=</mo><mn>1.28</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></semantics></math></inline-formula>. Particle image velocimetry, surface oil flow visualisation, constant temperature anemometry, and pressure measurements were performed. The study found that increasing the jet momentum flux caused a significant increase in thickness and deflection of the cavity separated shear layer. Due to the counterflow interaction between the jet and cavity separated shear layer, the growth rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><msub><mi>δ</mi><mi>ω</mi></msub><mo>/</mo><mi>d</mi><mi>x</mi></mrow></semantics></math></inline-formula>) of the cavity separated shear layer increased significantly from 0.193 for the no-jet case to 0.273 for the <i>J</i> = 0.96 kg/m·s<sup>2</sup> case. As a result, the return flow rate increased, causing the separation point on the cavity floor to shift upstream from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>/</mo><mi>L</mi><mo>≈</mo><mn>0.2</mn></mrow></semantics></math></inline-formula> for the no-jet case to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>/</mo><mi>L</mi><mo>≈</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> for the <i>J</i> = 0.96 kg/m·s<sup>2</sup> case. Furthermore, increasing the jet momentum flux increased the broadband level of the cavity separated shear layer oscillations.
format Article
id doaj-art-eeaef1a1de364aec8cbfc0efaefc7856
institution Kabale University
issn 2226-4310
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Aerospace
spelling doaj-art-eeaef1a1de364aec8cbfc0efaefc78562025-01-24T13:15:25ZengMDPI AGAerospace2226-43102024-12-01121710.3390/aerospace12010007Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity FlowNaser Al Haddabi0Konstantinos Kontis1Hossein Zare-Behtash2College of Engineering and Technology, University of Technology and Applied Sciences, P.O. Box 191, Al Musannah PC 314, OmanJames Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UKSchool of Engineering, University of Southampton, Southampton SO17 1BJ, UKCavity flows have a wide range of low-speed applications (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>≤</mo><mn>0.3</mn></mrow></semantics></math></inline-formula>), such as aircraft wheel wells, ground transportations, and pipelines. They induce strong flow oscillations which can substantially increase noise, drag, vibration, and lead to structural fatigue. In the current study, a steady jet was forced from the cavity trailing edge with different momentum fluxes (<i>J</i> = 0.11 kg/m·s<sup>2</sup>, 0.44 kg/m·s<sup>2</sup>, and 0.96 kg/m·s<sup>2</sup>). The aim of this study was to investigate the impact of the steady jet on the time-averaged flow field and the cavity separated shear layer oscillations for an open cavity with a length-to-depth ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>θ</mi></msub><mo>=</mo><mn>1.28</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></semantics></math></inline-formula>. Particle image velocimetry, surface oil flow visualisation, constant temperature anemometry, and pressure measurements were performed. The study found that increasing the jet momentum flux caused a significant increase in thickness and deflection of the cavity separated shear layer. Due to the counterflow interaction between the jet and cavity separated shear layer, the growth rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><msub><mi>δ</mi><mi>ω</mi></msub><mo>/</mo><mi>d</mi><mi>x</mi></mrow></semantics></math></inline-formula>) of the cavity separated shear layer increased significantly from 0.193 for the no-jet case to 0.273 for the <i>J</i> = 0.96 kg/m·s<sup>2</sup> case. As a result, the return flow rate increased, causing the separation point on the cavity floor to shift upstream from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>/</mo><mi>L</mi><mo>≈</mo><mn>0.2</mn></mrow></semantics></math></inline-formula> for the no-jet case to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>/</mo><mi>L</mi><mo>≈</mo><mn>0.1</mn></mrow></semantics></math></inline-formula> for the <i>J</i> = 0.96 kg/m·s<sup>2</sup> case. Furthermore, increasing the jet momentum flux increased the broadband level of the cavity separated shear layer oscillations.https://www.mdpi.com/2226-4310/12/1/7cavity flowaerospaceflow control
spellingShingle Naser Al Haddabi
Konstantinos Kontis
Hossein Zare-Behtash
Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
Aerospace
cavity flow
aerospace
flow control
title Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
title_full Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
title_fullStr Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
title_full_unstemmed Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
title_short Experimental Study of Steady Blowing from the Trailing Edge of an Open Cavity Flow
title_sort experimental study of steady blowing from the trailing edge of an open cavity flow
topic cavity flow
aerospace
flow control
url https://www.mdpi.com/2226-4310/12/1/7
work_keys_str_mv AT naseralhaddabi experimentalstudyofsteadyblowingfromthetrailingedgeofanopencavityflow
AT konstantinoskontis experimentalstudyofsteadyblowingfromthetrailingedgeofanopencavityflow
AT hosseinzarebehtash experimentalstudyofsteadyblowingfromthetrailingedgeofanopencavityflow