Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine

Abstract Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaan Sel, Andrea Hawkins-Daarud, Anirban Chaudhuri, Deen Osman, Ahmad Bahai, David Paydarfar, Karen Willcox, Caroline Chung, Roozbeh Jafari
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01447-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594448776691712
author Kaan Sel
Andrea Hawkins-Daarud
Anirban Chaudhuri
Deen Osman
Ahmad Bahai
David Paydarfar
Karen Willcox
Caroline Chung
Roozbeh Jafari
author_facet Kaan Sel
Andrea Hawkins-Daarud
Anirban Chaudhuri
Deen Osman
Ahmad Bahai
David Paydarfar
Karen Willcox
Caroline Chung
Roozbeh Jafari
author_sort Kaan Sel
collection DOAJ
description Abstract Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in cardiology and oncology. We highlight challenges and opportunities for developing personalized trial methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are essential for integrating digital twins into clinical practice.
format Article
id doaj-art-ee5c0fe980e047c0a0fb0c8a67c03892
institution Kabale University
issn 2398-6352
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-ee5c0fe980e047c0a0fb0c8a67c038922025-01-19T12:39:54ZengNature Portfolionpj Digital Medicine2398-63522025-01-018111210.1038/s41746-025-01447-ySurvey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicineKaan Sel0Andrea Hawkins-Daarud1Anirban Chaudhuri2Deen Osman3Ahmad Bahai4David Paydarfar5Karen Willcox6Caroline Chung7Roozbeh Jafari8Laboratory for Information and Decision Systems, Massachusetts Institute of TechnologyInstitute for Data Science in Oncology, The University of Texas MD Anderson Cancer CenterOden Institute for Computational Engineering and Sciences, The University of Texas at AustinDepartment of Electrical and Computer Engineering, Texas A&M UniversityMicrosystems Technology Laboratories, Massachusetts Institute of TechnologyOden Institute for Computational Engineering and Sciences, The University of Texas at AustinOden Institute for Computational Engineering and Sciences, The University of Texas at AustinInstitute for Data Science in Oncology, The University of Texas MD Anderson Cancer CenterLaboratory for Information and Decision Systems, Massachusetts Institute of TechnologyAbstract Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in cardiology and oncology. We highlight challenges and opportunities for developing personalized trial methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are essential for integrating digital twins into clinical practice.https://doi.org/10.1038/s41746-025-01447-y
spellingShingle Kaan Sel
Andrea Hawkins-Daarud
Anirban Chaudhuri
Deen Osman
Ahmad Bahai
David Paydarfar
Karen Willcox
Caroline Chung
Roozbeh Jafari
Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
npj Digital Medicine
title Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
title_full Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
title_fullStr Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
title_full_unstemmed Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
title_short Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
title_sort survey and perspective on verification validation and uncertainty quantification of digital twins for precision medicine
url https://doi.org/10.1038/s41746-025-01447-y
work_keys_str_mv AT kaansel surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT andreahawkinsdaarud surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT anirbanchaudhuri surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT deenosman surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT ahmadbahai surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT davidpaydarfar surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT karenwillcox surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT carolinechung surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine
AT roozbehjafari surveyandperspectiveonverificationvalidationanduncertaintyquantificationofdigitaltwinsforprecisionmedicine