Apple Watercore Grade Classification Method Based on ConvNeXt and Visible/Near-Infrared Spectroscopy

To address the issues of insufficient rigor in existing methods for quantifying apple watercore severity and the complexity and low accuracy of traditional classification models, this study proposes a method for watercore quantification and a classification model based on a deep convolutional neural...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunlin Zhao, Zhipeng Yin, Yushuo Tan, Wenbin Zhang, Panpan Guo, Yaxing Ma, Haijian Wu, Ding Hu, Quan Lu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/7/756
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the issues of insufficient rigor in existing methods for quantifying apple watercore severity and the complexity and low accuracy of traditional classification models, this study proposes a method for watercore quantification and a classification model based on a deep convolutional neural network. Initially, visible/near-infrared transmission spectral data of apple samples were collected. The apples were then sliced into 4.5 mm thick sections using a specialized tool, and image data of each slice were captured. Using BiSeNet and RIFE algorithms, a three-dimensional model of the watercore regions was constructed from the apple slices to calculate the watercore severity, which was subsequently categorized into five distinct levels. Next, methods such as the Gramian Angular Summation Field (GASF), Gram Angular Difference Field (GADF), and Markov Transition Field (MTF) were applied to transform the one-dimensional spectral data into two-dimensional images. These images served as input for training and prediction using the ConvNeXt deep convolutional neural network. The results indicated that the GADF method yielded the best performance, achieving a test set accuracy of 98.73%. Furthermore, the study contrasted the classification and prediction of watercore apples using traditional methods with the existing quantification approaches for watercore levels. The comparative results demonstrated that the proposed GADF-ConvNeXt model is more straightforward and efficient, achieving superior performance in classifying watercore grades. Furthermore, the newly proposed quantification method for watercore levels proved to be more effective.
ISSN:2077-0472