Pulsed vector atomic magnetometer using an alternating fast-rotating field

Abstract We introduce a vector atomic magnetometer that employs a fast-rotating magnetic field applied to a pulsed 87Rb scalar atomic magnetometer. This approach enables simultaneous measurements of the total magnetic field and its two polar angles relative to the rotation plane. Operating in gradio...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Wang, Wonjae Lee, Mark Limes, Thomas Kornack, Elizabeth Foley, Michael Romalis
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56668-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861854291623936
author Tao Wang
Wonjae Lee
Mark Limes
Thomas Kornack
Elizabeth Foley
Michael Romalis
author_facet Tao Wang
Wonjae Lee
Mark Limes
Thomas Kornack
Elizabeth Foley
Michael Romalis
author_sort Tao Wang
collection DOAJ
description Abstract We introduce a vector atomic magnetometer that employs a fast-rotating magnetic field applied to a pulsed 87Rb scalar atomic magnetometer. This approach enables simultaneous measurements of the total magnetic field and its two polar angles relative to the rotation plane. Operating in gradiometer mode, the magnetometer achieves a total field gradient sensitivity of 35 $${{{\rm{fT}}}}/\sqrt{{{{\rm{Hz}}}}}$$ fT / Hz (0.7 parts per billion) and angular resolutions of 6 $${{{\rm{nrad}}}}/\sqrt{{{{\rm{Hz}}}}}$$ nrad / Hz at a 50 μT Earth field strength. The noise spectra remain flat down to 1 Hz and 0.1 Hz, respectively. Here we show that this method overcomes several metrological challenges commonly faced by vector magnetometers and gradiometers. We propose a unique peak-altering modulation technique to mitigate systematic effects, including a newly identified dynamic heading error. Additionally, we establish the fundamental sensitivity limits of the sensor, demonstrating that its vector sensitivity approaches scalar sensitivity while preserving the inherent accuracy and calibration benefits of scalar sensors. This high-dynamic-range, ultrahigh-resolution magnetometer offers exceptional versatility for diverse applications.
format Article
id doaj-art-ee23ddb685ea486e8c91649c3ba2a6ee
institution Kabale University
issn 2041-1723
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-ee23ddb685ea486e8c91649c3ba2a6ee2025-02-09T12:44:21ZengNature PortfolioNature Communications2041-17232025-02-011611910.1038/s41467-025-56668-2Pulsed vector atomic magnetometer using an alternating fast-rotating fieldTao Wang0Wonjae Lee1Mark Limes2Thomas Kornack3Elizabeth Foley4Michael Romalis5Department of Physics, Princeton UniversityDepartment of Physics, Princeton UniversityTwinleaf LLC, 300 Deer Creek Dr.Twinleaf LLC, 300 Deer Creek Dr.Twinleaf LLC, 300 Deer Creek Dr.Department of Physics, Princeton UniversityAbstract We introduce a vector atomic magnetometer that employs a fast-rotating magnetic field applied to a pulsed 87Rb scalar atomic magnetometer. This approach enables simultaneous measurements of the total magnetic field and its two polar angles relative to the rotation plane. Operating in gradiometer mode, the magnetometer achieves a total field gradient sensitivity of 35 $${{{\rm{fT}}}}/\sqrt{{{{\rm{Hz}}}}}$$ fT / Hz (0.7 parts per billion) and angular resolutions of 6 $${{{\rm{nrad}}}}/\sqrt{{{{\rm{Hz}}}}}$$ nrad / Hz at a 50 μT Earth field strength. The noise spectra remain flat down to 1 Hz and 0.1 Hz, respectively. Here we show that this method overcomes several metrological challenges commonly faced by vector magnetometers and gradiometers. We propose a unique peak-altering modulation technique to mitigate systematic effects, including a newly identified dynamic heading error. Additionally, we establish the fundamental sensitivity limits of the sensor, demonstrating that its vector sensitivity approaches scalar sensitivity while preserving the inherent accuracy and calibration benefits of scalar sensors. This high-dynamic-range, ultrahigh-resolution magnetometer offers exceptional versatility for diverse applications.https://doi.org/10.1038/s41467-025-56668-2
spellingShingle Tao Wang
Wonjae Lee
Mark Limes
Thomas Kornack
Elizabeth Foley
Michael Romalis
Pulsed vector atomic magnetometer using an alternating fast-rotating field
Nature Communications
title Pulsed vector atomic magnetometer using an alternating fast-rotating field
title_full Pulsed vector atomic magnetometer using an alternating fast-rotating field
title_fullStr Pulsed vector atomic magnetometer using an alternating fast-rotating field
title_full_unstemmed Pulsed vector atomic magnetometer using an alternating fast-rotating field
title_short Pulsed vector atomic magnetometer using an alternating fast-rotating field
title_sort pulsed vector atomic magnetometer using an alternating fast rotating field
url https://doi.org/10.1038/s41467-025-56668-2
work_keys_str_mv AT taowang pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield
AT wonjaelee pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield
AT marklimes pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield
AT thomaskornack pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield
AT elizabethfoley pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield
AT michaelromalis pulsedvectoratomicmagnetometerusinganalternatingfastrotatingfield