The identity of implant materials governs the antimicrobial efficacy of SET-M33

Abstract The physical and chemical properties of implanted materials play a key role in their interaction with synthetic peptides that exert antimicrobial activity. In this study, we explored the diffusion properties and efficacy of the SET-M33 antimicrobial peptide in combination with artificial su...

Full description

Saved in:
Bibliographic Details
Main Authors: Alessia Maranesi, Sajad Mohammadi, Ismael Castañon, Felipe Gama-Franceschi, Chiara Falciani, Alessandro Pini, Laura Mezzanotte, Wendy Unger, Aldo Ferrari
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-99808-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849728270882308096
author Alessia Maranesi
Sajad Mohammadi
Ismael Castañon
Felipe Gama-Franceschi
Chiara Falciani
Alessandro Pini
Laura Mezzanotte
Wendy Unger
Aldo Ferrari
author_facet Alessia Maranesi
Sajad Mohammadi
Ismael Castañon
Felipe Gama-Franceschi
Chiara Falciani
Alessandro Pini
Laura Mezzanotte
Wendy Unger
Aldo Ferrari
author_sort Alessia Maranesi
collection DOAJ
description Abstract The physical and chemical properties of implanted materials play a key role in their interaction with synthetic peptides that exert antimicrobial activity. In this study, we explored the diffusion properties and efficacy of the SET-M33 antimicrobial peptide in combination with artificial substrates, comprising cardiac implantable electronic devices (CIEDs) or porous protective envelopes. We found that porous materials, such as biosynthesized cellulose, polymeric meshes, and electrospun membranes, were conducive to SET-M33 diffusion. The diffusion dynamics was controlled by the intrinsic fibrous architecture of the materials. Biosynthesized cellulose supported the peptide’s antimicrobial activity against E. coli and S. aureus. The efficacy of SET-M33 was instead reduced when combined with the other tested porous membranes and non-porous CIED interfaces, such as titanium and silicone. On the other hand, the low porosity of biosynthesized cellulose membranes, while effective in retaining the drug, diminished diffusion and thus peptide availability. In light of these findings, the implications for the use of antimicrobial peptides in the prevention of CIED surgical pocket infections are discussed.
format Article
id doaj-art-ee1770c8c53a4e0cb60cb5798bbbb1e7
institution DOAJ
issn 2045-2322
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-ee1770c8c53a4e0cb60cb5798bbbb1e72025-08-20T03:09:35ZengNature PortfolioScientific Reports2045-23222025-05-0115111410.1038/s41598-025-99808-wThe identity of implant materials governs the antimicrobial efficacy of SET-M33Alessia Maranesi0Sajad Mohammadi1Ismael Castañon2Felipe Gama-Franceschi3Chiara Falciani4Alessandro Pini5Laura Mezzanotte6Wendy Unger7Aldo Ferrari8Department of Material Science and Engineering, Universitat Politècnica de CatalunyaDepartment of Pediatrics, Laboratory of Pediatrics, Erasmus MC - Sophia Children’s Hospital, Erasmus University Medical CentreDepartment of Medical Biotechnologies, University of SienaDepartment of Radiology & Nuclear Medicine, Erasmus MC, Erasmus University Medical CentreDepartment of Medical Biotechnologies, University of SienaDepartment of Medical Biotechnologies, University of SienaDepartment of Molecular Genetics, Erasmus MC, Erasmus University Medical CentreDepartment of Pediatrics, Laboratory of Pediatrics, Erasmus MC - Sophia Children’s Hospital, Erasmus University Medical CentreHylomorph AG, TechnoparkAbstract The physical and chemical properties of implanted materials play a key role in their interaction with synthetic peptides that exert antimicrobial activity. In this study, we explored the diffusion properties and efficacy of the SET-M33 antimicrobial peptide in combination with artificial substrates, comprising cardiac implantable electronic devices (CIEDs) or porous protective envelopes. We found that porous materials, such as biosynthesized cellulose, polymeric meshes, and electrospun membranes, were conducive to SET-M33 diffusion. The diffusion dynamics was controlled by the intrinsic fibrous architecture of the materials. Biosynthesized cellulose supported the peptide’s antimicrobial activity against E. coli and S. aureus. The efficacy of SET-M33 was instead reduced when combined with the other tested porous membranes and non-porous CIED interfaces, such as titanium and silicone. On the other hand, the low porosity of biosynthesized cellulose membranes, while effective in retaining the drug, diminished diffusion and thus peptide availability. In light of these findings, the implications for the use of antimicrobial peptides in the prevention of CIED surgical pocket infections are discussed.https://doi.org/10.1038/s41598-025-99808-wImplant materialsSurgical pocket infectionAntimicrobial peptidesResistant bacteriaProtective envelopes
spellingShingle Alessia Maranesi
Sajad Mohammadi
Ismael Castañon
Felipe Gama-Franceschi
Chiara Falciani
Alessandro Pini
Laura Mezzanotte
Wendy Unger
Aldo Ferrari
The identity of implant materials governs the antimicrobial efficacy of SET-M33
Scientific Reports
Implant materials
Surgical pocket infection
Antimicrobial peptides
Resistant bacteria
Protective envelopes
title The identity of implant materials governs the antimicrobial efficacy of SET-M33
title_full The identity of implant materials governs the antimicrobial efficacy of SET-M33
title_fullStr The identity of implant materials governs the antimicrobial efficacy of SET-M33
title_full_unstemmed The identity of implant materials governs the antimicrobial efficacy of SET-M33
title_short The identity of implant materials governs the antimicrobial efficacy of SET-M33
title_sort identity of implant materials governs the antimicrobial efficacy of set m33
topic Implant materials
Surgical pocket infection
Antimicrobial peptides
Resistant bacteria
Protective envelopes
url https://doi.org/10.1038/s41598-025-99808-w
work_keys_str_mv AT alessiamaranesi theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT sajadmohammadi theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT ismaelcastanon theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT felipegamafranceschi theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT chiarafalciani theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT alessandropini theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT lauramezzanotte theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT wendyunger theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT aldoferrari theidentityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT alessiamaranesi identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT sajadmohammadi identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT ismaelcastanon identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT felipegamafranceschi identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT chiarafalciani identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT alessandropini identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT lauramezzanotte identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT wendyunger identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33
AT aldoferrari identityofimplantmaterialsgovernstheantimicrobialefficacyofsetm33