Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing

This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></se...

Full description

Saved in:
Bibliographic Details
Main Authors: Shangming Du, Tianwei Chen, Can Guo, Yuxing Duan, Song Wu, Lei Liang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3218
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850255903797805056
author Shangming Du
Tianwei Chen
Can Guo
Yuxing Duan
Song Wu
Lei Liang
author_facet Shangming Du
Tianwei Chen
Can Guo
Yuxing Duan
Song Wu
Lei Liang
author_sort Shangming Du
collection DOAJ
description This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR) receivers. We first derive a signal model for the heterodyne <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via zero-IF downconversion, (2) an analytic signal generation technique using the Hilbert transform (HT), and (3) a wavelet transform (WT)-based alternative for analytic signal extraction. Algorithm-hardware co-design implementations are detailed for both RFSoC and conventional FPGA platforms, with resource utilization comparisons. Additionally, we introduce an incremental DC-rejected phase unwrapper (IDRPU) algorithm to jointly address phase unwrapping and DC drift removal, minimizing computational overhead while avoiding numerical overflow. Experiments on simulated and real-world <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR data show that the HT method matches the performance of zero-IF demodulation with simpler hardware and lower resource usage, while the WT method offers enhanced robustness against fading noise (3.35–22.47 dB SNR improvement in fading conditions), albeit with slightly ambiguous event boundaries and higher hardware utilization. These findings provide actionable insights for demodulator design in distributed acoustic sensing (DAS) applications and advance the development of single-chip DAS systems.
format Article
id doaj-art-ee0ce9583bce4f7c826269659a741456
institution OA Journals
issn 1424-8220
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj-art-ee0ce9583bce4f7c826269659a7414562025-08-20T01:56:45ZengMDPI AGSensors1424-82202025-05-012510321810.3390/s25103218Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal ProcessingShangming Du0Tianwei Chen1Can Guo2Yuxing Duan3Song Wu4Lei Liang5Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, ChinaSchool of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, ChinaSanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, ChinaSanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, ChinaSanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, ChinaSanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, ChinaThis paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR) receivers. We first derive a signal model for the heterodyne <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via zero-IF downconversion, (2) an analytic signal generation technique using the Hilbert transform (HT), and (3) a wavelet transform (WT)-based alternative for analytic signal extraction. Algorithm-hardware co-design implementations are detailed for both RFSoC and conventional FPGA platforms, with resource utilization comparisons. Additionally, we introduce an incremental DC-rejected phase unwrapper (IDRPU) algorithm to jointly address phase unwrapping and DC drift removal, minimizing computational overhead while avoiding numerical overflow. Experiments on simulated and real-world <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-OTDR data show that the HT method matches the performance of zero-IF demodulation with simpler hardware and lower resource usage, while the WT method offers enhanced robustness against fading noise (3.35–22.47 dB SNR improvement in fading conditions), albeit with slightly ambiguous event boundaries and higher hardware utilization. These findings provide actionable insights for demodulator design in distributed acoustic sensing (DAS) applications and advance the development of single-chip DAS systems.https://www.mdpi.com/1424-8220/25/10/3218distributed acoustic sensingFPGARFSoC<i>ϕ</i>-OTDRheterodyne detectionphase demodulation
spellingShingle Shangming Du
Tianwei Chen
Can Guo
Yuxing Duan
Song Wu
Lei Liang
Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
Sensors
distributed acoustic sensing
FPGA
RFSoC
<i>ϕ</i>-OTDR
heterodyne detection
phase demodulation
title Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
title_full Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
title_fullStr Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
title_full_unstemmed Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
title_short Hardware-Efficient Phase Demodulation for Digital <i>ϕ</i>-OTDR Receivers with Baseband and Analytic Signal Processing
title_sort hardware efficient phase demodulation for digital i ϕ i otdr receivers with baseband and analytic signal processing
topic distributed acoustic sensing
FPGA
RFSoC
<i>ϕ</i>-OTDR
heterodyne detection
phase demodulation
url https://www.mdpi.com/1424-8220/25/10/3218
work_keys_str_mv AT shangmingdu hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing
AT tianweichen hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing
AT canguo hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing
AT yuxingduan hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing
AT songwu hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing
AT leiliang hardwareefficientphasedemodulationfordigitaliphiotdrreceiverswithbasebandandanalyticsignalprocessing