Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices

Generically, in a system with more than three point vortices, there exist regions of stability around each vortex, even if the system is chaotic. These regions are usually called stability islands, and they have a morphology that is hard to characterize. In a system of two or three point vortices, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Gil Marques, Sílvio Gama
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/4/272
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850156181169897472
author Gil Marques
Sílvio Gama
author_facet Gil Marques
Sílvio Gama
author_sort Gil Marques
collection DOAJ
description Generically, in a system with more than three point vortices, there exist regions of stability around each vortex, even if the system is chaotic. These regions are usually called stability islands, and they have a morphology that is hard to characterize. In a system of two or three point vortices, these stability islands are better named vortex atmospheres or atmospheric islands, since the whole system is regular. In this work, we present an analytical study to characterize these atmospheres in two point vortex systems for arbitrary values of the circulations <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub></semantics></math></inline-formula> in the infinite two-dimensional plane <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>—the simplest scenario—by studying the dynamics of passive particles in these environments. We use the trajectories of passive particles to find the stagnation points of these systems, the special trajectories that partition <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula> in different regions and the analytical expressions that define the boundary of the atmospheric islands. In order to characterize the geometry of these atmospheres, we compute their perimeter and area as a function of <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub></mrow></mfrac></mstyle><mspace width="0.166667em"/><mo>,</mo></mrow></semantics></math></inline-formula> if <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub><mo>≠</mo><mn>0</mn><mspace width="0.166667em"/><mo>.</mo></mrow></semantics></math></inline-formula> The case <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is treated separately, as the perimeter and area of the atmospheres do not depend on the circulations. Furthermore, in this latter case, we observe that the atmospheric island has a very similar morphology to an ellipse, only differing from the ellipse that best approximates the atmosphere by a relative error of <inline-formula><math display="inline"><semantics><mrow><mo>≈</mo></mrow></semantics></math></inline-formula>3.76‰ in area.
format Article
id doaj-art-ee075cf9a58746f291dd21086b6b37ba
institution OA Journals
issn 2075-1680
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-ee075cf9a58746f291dd21086b6b37ba2025-08-20T02:24:39ZengMDPI AGAxioms2075-16802025-04-0114427210.3390/axioms14040272Geometric Characterization of Atmospheric Islands Formed by Two Point VorticesGil Marques0Sílvio Gama1Centro de Matemática da Universidade do Porto, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, PortugalCentro de Matemática da Universidade do Porto, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, PortugalGenerically, in a system with more than three point vortices, there exist regions of stability around each vortex, even if the system is chaotic. These regions are usually called stability islands, and they have a morphology that is hard to characterize. In a system of two or three point vortices, these stability islands are better named vortex atmospheres or atmospheric islands, since the whole system is regular. In this work, we present an analytical study to characterize these atmospheres in two point vortex systems for arbitrary values of the circulations <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub></semantics></math></inline-formula> in the infinite two-dimensional plane <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>—the simplest scenario—by studying the dynamics of passive particles in these environments. We use the trajectories of passive particles to find the stagnation points of these systems, the special trajectories that partition <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula> in different regions and the analytical expressions that define the boundary of the atmospheric islands. In order to characterize the geometry of these atmospheres, we compute their perimeter and area as a function of <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub></mrow></mfrac></mstyle><mspace width="0.166667em"/><mo>,</mo></mrow></semantics></math></inline-formula> if <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub><mo>≠</mo><mn>0</mn><mspace width="0.166667em"/><mo>.</mo></mrow></semantics></math></inline-formula> The case <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Γ</mi><mn>1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">Γ</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is treated separately, as the perimeter and area of the atmospheres do not depend on the circulations. Furthermore, in this latter case, we observe that the atmospheric island has a very similar morphology to an ellipse, only differing from the ellipse that best approximates the atmosphere by a relative error of <inline-formula><math display="inline"><semantics><mrow><mo>≈</mo></mrow></semantics></math></inline-formula>3.76‰ in area.https://www.mdpi.com/2075-1680/14/4/272point vortexvortex dynamicsfluid dynamics
spellingShingle Gil Marques
Sílvio Gama
Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
Axioms
point vortex
vortex dynamics
fluid dynamics
title Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
title_full Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
title_fullStr Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
title_full_unstemmed Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
title_short Geometric Characterization of Atmospheric Islands Formed by Two Point Vortices
title_sort geometric characterization of atmospheric islands formed by two point vortices
topic point vortex
vortex dynamics
fluid dynamics
url https://www.mdpi.com/2075-1680/14/4/272
work_keys_str_mv AT gilmarques geometriccharacterizationofatmosphericislandsformedbytwopointvortices
AT silviogama geometriccharacterizationofatmosphericislandsformedbytwopointvortices